5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 5
May  2023
Turn off MathJax
Article Contents

Lack of evolutionary convergence in multiple primary lung cancer suggests insufficient specificity of personalized therapy

doi: 10.1016/j.jgg.2022.11.005
Funds:

This work was supported by the National Key Research and Development Program of China to J.-R. Y. (2021YFF1200904 and 2021YFA1302500), the National Natural Science Foundation of China to J.-R. Y. (31871320 and 81830103), and by Science and Technology Planning Project of ZhuHai, China to H. C., and by Science and Technology Planning Project of Guangdong Province, China to X. Z. (2014A030304053).

  • Received Date: 2022-11-11
  • Accepted Date: 2022-11-11
  • Publish Date: 2022-11-19
  • Multiple primary lung cancer (MPLC) is an increasingly prevalent subtype of lung cancer. According to recent genomic studies, the different lesions of a single MPLC patient exhibit functional similarities that may reflect evolutionary convergence. We perform whole-exome sequencing for a unique cohort of MPLC patients with multiple samples from each lesion found. Using our own and other relevant public data, evolutionary tree reconstruction reveals that cancer driver gene mutations occurred at the early trunk, indicating evolutionary contingency rather than adaptive convergence. Additionally, tumors from the same MPLC patient are as genetically diverse as those from different patients, while within-tumor genetic heterogeneity is significantly lower. Furthermore, the aberrant molecular functions enriched in mutated genes for a sample show a strong overlap with other samples from the same tumor, but not with samples from other tumors or other patients. Overall, there is no evidence of adaptive convergence during the evolution of MPLC. Most importantly, the similar between-tumor diversity and between-patient diversity suggest that personalized therapies may not adequately account for the genetic diversity among different tumors in an MPLC patient. To fully exploit the strategic value of precision medicine, targeted therapies should be designed and delivered on a per-lesion basis.
  • loading
  • [1]
    Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR et al., 2017. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 49:1693-1704.
    [2]
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
    [3]
    Cancer Genome Atlas Research Network. 2014. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543-550.
    [4]
    Carlson M. 2019. org. Hs. eg. db: Genome Wide Annotation for Human. R package version 3.8. vol. 2. 2019. In.
    [5]
    Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA et al., 2012. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30:413-421.
    [6]
    Chen C, Huang X, Peng M, Liu W, Yu F, Wang X. 2019. Multiple primary lung cancer: a rising challenge. J. Thorac. Dis. 11:S523-S536.
    [7]
    Chen Y, Xue Y, Jin Y, Ji H. 2021. Lung stem cells in regeneration and tumorigenesis. J Genet. Genomics 48:268-276.
    [8]
    Cheng H, Lei BF, Peng PJ, Lin YJ, Wang XJ. 2017. Histologic lung cancer subtype differentiates synchronous multiple primary lung adenocarcinomas from intrapulmonary metastases. J. Surg. Res. 211:215-222.
    [9]
    Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, Chen HC, Agarwala R, McLaren WM, Ritchie GR et al., 2011. Modernizing reference genome assemblies. PLoS Biol. 9:e1001091.
    [10]
    Gould SJ. 1990. Wonderful Life: the Burgess Shale and the Nature of History: WW Norton & Company.
    [11]
    Gould SJ, Lewontin RC. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 205:581-598.
    [12]
    Greaves M, Maley CC. 2012. Clonal evolution in cancer. Nature 481:306-313.
    [13]
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646-674.
    [14]
    Hu X, Fujimoto J, Ying L, Fukuoka J, Ashizawa K, Sun W, Reuben A, Chow CW, McGranahan N, Chen R et al., 2019a. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nat. Commun. 10:2978.
    [15]
    Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A et al., 2019b. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51:1113-1122.
    [16]
    Kerr B, Riley MA, Feldman MW, Bohannan BJ. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171-174.
    [17]
    Koonin EV. 2016. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 14:114.
    [18]
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. Mega X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.
    [19]
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.
    [20]
    Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, Chen K, Dong L, Cao L, Tao Y et al., 2015. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc. Natl. Acad. Sci. U.S.A. 112:E6496-E6505.
    [21]
    Liu SH, Shen PC, Chen CY, Hsu AN, Cho YC, Lai YL, Chen FH, Li CY, Wang SC, Chen M et al., 2020. DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res. 48:D863-D870.
    [22]
    Liu Y, Zhang J, Li L, Yin G, Zhang J, Zheng S, Cheung H, Wu N, Lu N, Mao X et al., 2016. Genomic heterogeneity of multiple synchronous lung cancer. Nat. Commun. 7:13200.
    [23]
    Lynch M. 2007. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8:803-813.
    [24]
    Ma P, Fu Y, Cai MC, Yan Y, Jing Y, Zhang S, Chen M, Wu J, Shen Y, Zhu L et al., 2017. Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer. Nat. Commun. 8:823.
    [25]
    Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H et al., 2020. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20:555-572.
    [26]
    Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. 2014. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54-58.
    [27]
    McGranahan N, Swanton C. 2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15-26.
    [28]
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303.
    [29]
    McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. 2016. The ensembl variant effect predictor. Genome Biol. 17:122.
    [30]
    Morris SC. 1998. The Crucible of Creation: the Burgess Shale and the Rise of Animals.: Oxford University Press.
    [31]
    Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanic M, Reading JL, Joshi K et al., 2019. Neoantigen-directed immune escape in lung cancer evolution. Nature 567:479-485.
    [32]
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 71:209-249.
    [33]
    Tao Y, Hu Z, Ling S, Yeh S-H, Zhai W, Chen K, Li C, Wang Y, Wang K, Wang H-Y et al., 2015. Further Genetic Diversification in Multiple Tumors and an Evolutionary Perspective on Therapeutics. bioRxiv.
    [34]
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E et al., 2019. COSMIC: the Catalogue of somatic mutations in cancer. Nucleic Acids Res. 47:D941-d947.
    [35]
    Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y et al., 2015. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21:560-562.
    [36]
    Trigos AS, Pearson RB, Papenfuss AT, Goode DL. 2017. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. U.S.A. 114:6406-6411.
    [37]
    Vitale I, Shema E, Loi S, Galluzzi L. 2021. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27:212-224.
    [38]
    Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ et al., 2016. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48:768-776.
    [39]
    Wang T, Ruan S, Zhao X, Shi X, Teng H, Zhong J, You M, Xia K, Sun Z, Mao F. 2021. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers. Nucleic Acids Res. 49:D1289-D1301.
    [40]
    Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 2016. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48:238-244.
    [41]
    Wu CI, Wang HY, Ling S, Lu X. 2016. The ecology and evolution of cancer: the ultra-microevolutionary process. Annu. Rev. Genet. 50:347-369.
    [42]
    Ye C, Wang J, Li W, Chai Y. 2016. Novel strategy for synchronous multiple primary lung cancer displaying unique molecular profiles. Ann. Thorac. Surg. 101:e45-e47.
    [43]
    Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284-287.
    [44]
    Zairis S, Khiabanian H, Blumberg AJ, Rabadan R editors. International Conference on Brain Informatics and Health. 2014.
    [45]
    Zhai W, Lim TK, Zhang T, Phang ST, Tiang Z, Guan P, Ng MH, Lim JQ, Yao F, Li Z et al., 2017. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat. Commun. 8:4565.
    [46]
    Zhou Q, Zhang XC, Chen ZH, Yin XL, Yang JJ, Xu CR, Yan HH, Chen HJ, Su J, Zhong WZ et al., 2011. Relative abundance of EGFR mutations predicts benefit from gefitinib treatment for advanced non-small-cell lung cancer. J. Clin. Oncol. 29:3316-3321.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (203) PDF downloads (12) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return