[1] |
Atila, C., Loughrey, P.B., Garrahy, A., Winzeler, B., Refardt, J., Gildroy, P., Hamza, M., Pal, A., Verbalis, J.G., Thompson, C.J., et al. (2022). Central diabetes insipidus from a patient's perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey. Lancet Diabetes Endocrinol 10, 700-709.
|
[2] |
Aulinas, A., Plessow, F., Asanza, E., Silva, L., Marengi, D.A., Fan, W., Abedi, P., Verbalis, J., Tritos, N.A., Nachtigall, L., et al. (2019). Low Plasma Oxytocin Levels and Increased Psychopathology in Hypopituitary Men With Diabetes Insipidus. The Journal of clinical endocrinology and metabolism 104, 3181-3191.
|
[3] |
Christ-Crain, M., Bichet, D.G., Fenske, W.K., Goldman, M.B., Rittig, S., Verbalis, J.G., and Verkman, A.S. (2019). Diabetes insipidus. Nat Rev Dis Primers 5, 54.
|
[4] |
Christ-Crain, M., Winzeler, B., and Refardt, J. (2021). Diagnosis and management of diabetes insipidus for the internist: an update. J Intern Med 290, 73-87.
|
[5] |
Donaldson, Z.R., and Young, L.J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900-904.
|
[6] |
Feng, C., Wang, X., Shi, H., Yan, Q., Zheng, M., Li, J., Zhang, Q., Qin, Y., Zhong, Y., Mi, J., et al. (2018). Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer. J Genet Genomics 45, 47-50.
|
[7] |
Garcia-Castano, A., Madariaga, L., Perez de Nanclares, G., Vela, A., Rica, I., Gaztambide, S., Martinez, R., Martinez de LaPiscina, I., Urrutia, I., Aguayo, A., et al. (2020). Forty-One Individuals With Mutations in the AVP-NPII Gene Associated With Familial Neurohypophyseal Diabetes Insipidus. J Clin Endocrinol Metab 105(4):1112-1118.
|
[8] |
Gudinchet, F., Brunelle, F., Barth, M.O., Taviere, V., Brauner, R., Rappaport, R., and Lallemand, D. (1989). MR imaging of the posterior hypophysis in children. AJR Am J Roentgenol 153, 351-354.
|
[9] |
Hong, H., Zhao, Z., Huang, X., Guo, C., Zhao, H., Wang, G.D., Zhang, Y.P., Zhao, J.P., Shi, J., Wu, Q.F., et al. (2022). Comparative Proteome and Cis-Regulatory Element Analysis Reveals Specific Molecular Pathways Conserved in Dog and Human Brains. Mol Cell Proteomics 21, 100261.
|
[10] |
Mahia, J., and Bernal, A. (2021). Animal models for diabetes insipidus. Handb Clin Neurol 181, 275-288.
|
[11] |
Russell, T.A., Ito, M., Ito, M., Yu, R.N., Martinson, F.A., Weiss, J., and Jameson, J.L. (2003). A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. Journal of Clinical Investigation 112, 1697-1706.
|
[12] |
Teshima, T., Hara, Y., Masuda, H., Taoda, T., Nezu, Y., Harada, Y., Yogo, T., Hasegawa, D., Orima, H., Osamura, R.Y., et al. (2008). Relationship between arginine vasopressin and high signal intensity in the pituitary posterior lobe on T1-weighted MR images in dogs. The Journal of veterinary medical science 70, 693-699.
|
[13] |
Tsai, K.L., Clark, L.A., and Murphy, K.E. (2007). Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome 18, 444-451.
|
[14] |
Turkkahraman, D., Saglar, E., Karaduman, T., and Mergen, H. (2015). AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus. Pituitary 18, 898-904.
|
[15] |
Valtin, H., and Schroeder, H.A. (1964). Familial Hypothalamic Diabetes Insipidus in Rats (Brattleboro Strain). Am J Physiol 206, 425-430.
|
[16] |
Yang, H., Yan, K., Wang, L., Gong, F., Jin, Z., and Zhu, H. (2019). Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel nonsense mutation in AVP-NPII gene. Exp Ther Med 18, 1309-1314.
|
[17] |
Zhao, H., Zhao, J., Wu, D., Sun, Z., Hua, Y., Zheng, M., Liu, Y., Yang, Q., Huang, X., Li, Y., et al. (2021). Dogs lacking Apolipoprotein E show advanced atherosclerosis leading to apparent clinical complications. Sci China Life Sci 65(7), 1342-1356.
|