5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 2
Feb.  2023
Turn off MathJax
Article Contents

primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data

doi: 10.1016/j.jgg.2022.10.003
Funds:

We thank the Computational Biology Core and Center for Computation and Visualization at Brown University for their help and support throughout this project. We acknowledge and thank the Sedivy laboratory for their generous provision of materials used to conduct selected experiments. We additionally would like to acknowledge the Brunet laboratory for providing additional materials from their single-cell dataset. Support for AE was provided by T32AG041688 and P20GM119943 from the National Institutes of Health, funding for the research was provided by P20GM119943 from the National Institutes of Health.

  • Received Date: 2022-06-28
  • Accepted Date: 2022-10-24
  • Rev Recd Date: 2022-10-21
  • Publish Date: 2022-11-09
  • Single-nucleus RNA-sequencing technology has revolutionized understanding of nuanced changes in gene expression between cell types within tissues. Unfortunately, our understanding of regulatory RNAs, such as microRNAs (miRNAs), is limited through both single-cell and single-nucleus techniques due to the short length of miRNAs in the cytoplasm and the incomplete reference of longer primary miRNA (pri-miRNA) transcripts in the nucleus. We build a custom reference to align and count pri-miRNA sequences in single-nucleus data. Using young and aged subventricular zone (SVZ) nuclei, we show differential expression of pri-miRNAs targeting genes involved in neural stem cells (NSC) differentiation in the aged SVZ. Furthermore, using wild-type and 5XFAD mouse model cortex nuclei, to validate the use of primiReference, we find cell-type-specific expression of pri-miRNAs known to be involved in Alzheimer's disease (AD). pri-miRNAs likely contribute to NSC dysregulation with age and AD pathology. primiReference is paramount in capturing a global profile of gene expression and regulation in single-nucleus data and can provide key insights into cell-type-specific expression of pri-miRNAs, paving the way for future studies of regulation and pathway dysregulation. By looking at pri-miRNA abundance and transcriptional differences, regulation of gene expression by miRNAs in disease and aging can be further explored.
  • loading
  • Agostini, M., Romeo, F., Inoue, S., Niklison-Chirou, M.V., Elia, A.J., Dinsdale, D., Morone, N., Knight, R.A., Mak, T.W.,Melino, G., 2016. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502-1514
    An, F., Gong, G., Wang, Y., Bian, M., Yu, L.,Wei, C., 2017. MiR-124 acts as a target for Alzheimer's disease by regulating BACE1. Oncotarget 8, 114065-114071
    Arnes, M., Kim, Y.A., Lannes, J., Alaniz, M.E., Cho, J.D., McCabe, B.D.,Santa-Maria, I., 2019. MiR-219 deficiency in Alzheimer's disease contributes to neurodegeneration and memory dysfunction through post-transcriptional regulation of tau-kinase network. bioRxiv, 607176
    Boareto, M., Iber, D.,Taylor, V., 2017. Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development 144, 3465-3474
    Brandi, R., Fabiano, M., Giorgi, C., Arisi, I., La Regina, F., Malerba, F., Turturro, S., Storti, A.E., Ricevuti, F., Amadio, S., et al., 2021. Nerve Growth Factor Neutralization Promotes Oligodendrogenesis by Increasing miR-219a-5p Levels. Cells 10
    Bruinsma, I.B., van Dijk, M., Bridel, C., van de Lisdonk, T., Haverkort, S.Q., Runia, T.F., Steinman, L., Hintzen, R.Q., Killestein, J., Verbeek, M.M., et al., 2017. Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. J. Neuroinflammation 14, 235
    Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P.,Satija, R., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902 e1821
    Butler, A., Hoffman, P., Smibert, P., Papalexi, E.,Satija, R., 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420
    Chang, T.C., Pertea, M., Lee, S., Salzberg, S.L.,Mendell, J.T., 2015. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res. 25, 1401-1409
    Chawla, G., Deosthale, P., Childress, S., Wu, Y.-C., Sokol, N.S., 2016. A let-7-to-miR-125 microRNA switch regulates neuronal integrity and lifespan in Drosophila. PLos Genet. 12, e1006247
    Chen, P.H., Cheng, C.H., Shih, C.M., Ho, K.H., Lin, C.W., Lee, C.C., Liu, A.J., Chang, C.K.,Chen, K.C., 2016. The inhibition of microRNA-128 on IGF-1-activating mTOR signaling involves in temozolomide-induced glioma cell apoptotic death. PLoS One 11, e0167096
    Conover, J.C.,Shook, B.A., 2011. Aging of the subventricular zone neural stem cell niche. Aging Dis. 2, 149-163
    Daynac, M., Morizur, L., Chicheportiche, A., Mouthon, M.A.,Boussin, F.D., 2016. Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells. Sci. Rep. 6, 21505
    Daynac, M., Morizur, L., Kortulewski, T., Gauthier, L.R., Ruat, M., Mouthon, M.A.,Boussin, F.D., 2015. Cell sorting of neural stem and progenitor cells from the adult mouse subventricular zone and live-imaging of their cell cycle dynamics. JoVE
    Ding, J., Adiconis, X., Simmons, S.K., Kowalczyk, M.S., Hession, C.C., Marjanovic, N.D., Hughes, T.K., Wadsworth, M.H., Burks, T., Nguyen, L.T., et al., 2020. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737-746
    Dugas, J.C., Cuellar, T.L., Scholze, A., Ason, B., Ibrahim, A., Emery, B., Zamanian, J.L., Foo, L.C., McManus, M.T.,Barres, B.A., 2010. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597-611
    Dulken, B.W., Buckley, M.T., Navarro Negredo, P., Saligrama, N., Cayrol, R., Leeman, D.S., George, B.M., Boutet, S.C., Hebestreit, K., Pluvinage, J.V., et al., 2019. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205-210
    Dulken, B.W., Leeman, D.S., Boutet, S.C., Hebestreit, K.,Brunet, A., 2017. Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 18, 777-790
    Falk, S.,Gotz, M., 2017. Glial control of neurogenesis. Curr. Opin. Neurobiol. 47, 188-195
    Floyd, D.H., Zhang, Y., Dey, B.K., Kefas, B., Breit, H., Marks, K., Dutta, A., Herold-Mende, C., Synowitz, M., Glass, R., et al., 2014. Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One 9, e96239
    Gugliandolo, A., Chiricosta, L., Boccardi, V., Mecocci, P., Bramanti, P.,Mazzon, E., 2020. MicroRNAs modulate the pathogenesis of alzheimer's disease: an in silico analysis in the human brain. Genes 11
    Ha, M.,Kim, V.N., 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524
    He, L., Vanlandewijck, M., Raschperger, E., Andaloussi Mae, M., Jung, B., Lebouvier, T., Ando, K., Hofmann, J., Keller, A.,Betsholtz, C., 2016. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108
    Herbert, J., Wilcox, J.N., Pham, K.T., Fremeau, R.T., Jr., Zeviani, M., Dwork, A., Soprano, D.R., Makover, A., Goodman, D.S., Zimmerman, E.A., et al., 1986. Transthyretin: a choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology 36, 900-911
    Hu, F., Sun, B., Xu, P., Zhu, Y., Meng, X.H., Teng, G.J.,Xiao, Z.D., 2017. MiR-218 induces neuronal differentiation of ASCs in a temporally sequential manner with fibroblast growth factor by regulation of the Wnt signaling pathway. Sci. Rep. 7, 39427
    Ji, F., Lv, X.,Jiao, J., 2013. The role of microRNAs in neural stem cells and neurogenesis. J. Genet. Genomics 40, 61-66
    Jiang, Y.H., Man, Y.Y., Liu, Y., Yin, C.J., Li, J.L., Shi, H.C., Zhao, H.,Zhao, S.G., 2021. Loss of miR-23b/27b/24-1 cluster impairs glucose tolerance via glycolysis pathway in mice. Int. J. Mol. Sci. 22
    Karagkouni, D., Paraskevopoulou, M.D., Chatzopoulos, S., Vlachos, I.S., Tastsoglou, S., Kanellos, I., Papadimitriou, D., Kavakiotis, I., Maniou, S., Skoufos, G., et al., 2018. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 46, D239-D245
    Kim, J.H., Lee, B.R., Choi, E.S., Lee, K.M., Choi, S.K., Cho, J.H., Jeon, W.B.,Kim, E., 2017. Reverse expression of aging-associated molecules through transfection of miRNAs to aged mice. Mol. Ther. Nucleic Acids 6, 106-115
    Kim, Y.K.,Kim, V.N., 2007. Processing of intronic microRNAs. EMBO J. 26, 775-783
    Kozomara, A., Birgaoanu, M.,Griffiths-Jones, S., 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155-D162
    Kozomara, A.,Griffiths-Jones, S., 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-D73
    Kozuka, T., Omori, Y., Watanabe, S., Tarusawa, E., Yamamoto, H., Chaya, T., Furuhashi, M., Morita, M., Sato, T., Hirose, S., et al., 2019. miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation. Sci. Rep. 9, 3445
    Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O'Day, E., Chowdhury, D., Dykxhoorn, D.M., Tsai, P., Hofmann, O., et al., 2009. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol. Cell 35, 610-625
    Lee, Y., Jeon, K., Lee, J.T., Kim, S.,Kim, V.N., 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663-4670
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,Genome Project Data Processing, S., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079
    Liao, Y., Smyth, G.K.,Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930
    Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., et al., 2005. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375
    Lim, D.A.,Alvarez-Buylla, A., 1999. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. U. S. A. 96, 7526-7531
    Lim, D.A.,Alvarez-Buylla, A., 2016. The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harbor Perspect. Biol. 8
    Love, M.I., Huber, W.,Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550
    Ma, Y., Li, C., Huang, Y., Wang, Y., Xia, X.,Zheng, J.C., 2019. Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun. Signal. 17, 96
    Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L., Li, H., Haring, M., Hochgerner, H., Romanov, R.A., et al., 2016. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326-1329
    Massirer, K.B., Carromeu, C., Griesi-Oliveira, K.,Muotri, A.R., 2011. Maintenance and differentiation of neural stem cells. Wiley Interdiscip. Rev. Syst. Biol. Med .3, 107-114
    Matarredona, E.R., Talaveron, R.,Pastor, A.M., 2018. Interactions between neural progenitor cells and microglia in the subventricular zone: physiological implications in the neurogenic niche and after implantation in the injured brain. Front. Cell. Neurosci. 12, 268
    Mateo, J.L., van den Berg, D.L., Haeussler, M., Drechsel, D., Gaber, Z.B., Castro, D.S., Robson, P., Lu, Q.R., Crawford, G.E., Flicek, P., et al., 2015. Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Res. 25, 41-56
    Nazmi, A., Dutta, K., Hazra, B., Basu, A., 2014. Role of pattern recognition receptors in flavivirus infections. Virus Res. 185, 32-40
    Neph, S., Kuehn, M.S., Reynolds, A.P., Haugen, E., Thurman, R.E., Johnson, A.K., Rynes, E., Maurano, M.T., Vierstra, J., Thomas, S., et al., 2012. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919-1920
    O'Brien, J., Hayder, H., Zayed, Y.,Peng, C., 2018. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402
    Osorio-Querejeta, I., Carregal-Romero, S., Ayerdi-Izquierdo, A., Mager, I., A N.L., Wood, M., Egimendia, A., Betanzos, M., Alberro, A., Iparraguirre, L., et al., 2020. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics 12
    Papagiannakopoulos, T.,Kosik, K.S., 2009. MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4, 375-376
    Prozorovski, T., Schulze-Topphoff, U., Glumm, R., Baumgart, J., Schroter, F., Ninnemann, O., Siegert, E., Bendix, I., Brustle, O., Nitsch, R., et al., 2008. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10, 385-394
    Puigdellivol, M., Allendorf, D.H.,Brown, G.C., 2020. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 14, 162
    Qian, P., Banerjee, A., Wu, Z.S., Zhang, X., Wang, H., Pandey, V., Zhang, W.J., Lv, X.F., Tan, S., Lobie, P.E., et al., 2012. Loss of SNAIL regulated miR-128-2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res. 72, 6036-6050
    Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M.,Alvarez-Buylla, A., 2006. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415-434
    Saito, K., Koike, T., Kawashima, F., Kurata, H., Shibuya, T., Satoh, T., Hata, Y., Yamada, H.,Mori, T., 2018. Identification of NeuN immunopositive cells in the adult mouse subventricular zone. J. Comp. Neurol. 526, 1927-1942
    Salazar, S.V., Gallardo, C., Kaufman, A.C., Herber, C.S., Haas, L.T., Robinson, S., Manson, J.C., Lee, M.K.,Strittmatter, S.M., 2017. Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in transgenic alzheimer's disease. J. Neurosci. 37, 9207-9221
    Santa-Maria, I., Alaniz, M.E., Renwick, N., Cela, C., Fulga, T.A., Van Vactor, D., Tuschl, T., Clark, L.N., Shelanski, M.L., McCabe, B.D., et al., 2015. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J. Clin. Invest. 125, 681-686
    Schiera, G., Di Liegro, C.M.,Di Liegro, I., 2019. Cell-to-Cell communication in learning and memory: from neuro- and glio-transmission to information exchange mediated by extracellular vesicles. Int. J. Mol. Sci. 21
    Shah, P.T., Stratton, J.A., Stykel, M.G., Abbasi, S., Sharma, S., Mayr, K.A., Koblinger, K., Whelan, P.J.,Biernaskie, J., 2018. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell 173, 1045-1057 e1049
    Smith, P., Al Hashimi, A., Girard, J., Delay, C.,Hebert, S.S., 2011. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J. Neurochem. 116, 240-247
    Song, H., Stevens, C.F.,Gage, F.H., 2002. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39-44
    Stevanato, L.,Sinden, J.D., 2014. The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res. Ther. 5, 49
    Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M. 3rd, Hao, Y., Marlon Stoeckius, M., Smibert, P., Satija, R., 2019. Comprehensive integration of single-cell data. Cell, 177,1888-1902
    Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A., Dolbeare, T., et al., 2016. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346
    Thiel, G., 1993. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol. 3, 87-95
    Thrupp, N., Sala Frigerio, C., Wolfs, L., Skene, N.G., Fattorelli, N., Poovathingal, S., Fourne, Y., Matthews, P.M., Theys, T., Mancuso, R., et al., 2020. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. Cell Rep. 32, 108189
    Tsai, T.F., Lin, J.F., Chou, K.Y., Lin, Y.C., Chen, H.E.,Hwang, T.I., 2018. miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. OncoTargets Ther. 11, 239-252
    Um, J.W.,Strittmatter, S.M., 2013. Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7, 37-41
    Vlachos, I.S., Zagganas, K., Paraskevopoulou, M.D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T.,Hatzigeorgiou, A.G., 2015. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 43, W460-W466
    Wallach, A.I., Tremblay, M., Kister, I., 2021. Advances in the treatment of neuromyelitis optica spectrum disorder. Neurol. Clin. 39, 35-49
    Wang, B.Z., Yang, J.J., Zhang, H., Smith, C.A.,Jin, K., 2019a. AMPK signaling regulates the age-related decline of hippocampal neurogenesis. Aging Dis. 10, 1058-1074
    Wang, H., Moyano, A.L., Ma, Z., Deng, Y., Lin, Y., Zhao, C., Zhang, L., Jiang, M., He, X., Ma, Z., et al., 2017. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev. Cell 40, 566-582 e565
    Wang, Z., Yuan, Y., Zhang, Z.,Ding, K., 2019b. Inhibition of miRNA-27b enhances neurogenesis via AMPK activation in a mouse ischemic stroke model. FEBS Open Bio. 9, 859-869
    Wickham, H., 2009. Ggplot2 : Elegant Graphics for Data Analysis. Springer, New York
    Ximerakis, M., Lipnick, S.L., Innes, B.T., Simmons, S.K., Adiconis, X., Dionne, D., Mayweather, B.A., Nguyen, L., Niziolek, Z., Ozek, C., et al., 2019. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696-1708
    Yang, Z., Jiang, X., Zhang, J., Huang, X., Zhang, X., Wang, J., Shi, H., Yu, A., 2018. Let-7a promotes microglia M2 polarization by targeting CKIP-1 following ICH. Immunol. Lett. 202, 1-7
    Zhang, W., Kim, P.J., Chen, Z., Lokman, H., Qiu, L., Zhang, K., Rozen, S.G., Tan, E.K., Je, H.S.,Zeng, L., 2016. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. Elife 5
    Zhang, Y., Qian, L., Liu, Y., Liu, Y., Yu, W.,Zhao, Y., 2021. CircRNA-ceRNA network revealing the potential regulatory roles of CircRNA in alzheimer's disease involved the cGMP-PKG signal pathway. Front. Mol. Neurosci. 14, 665788
    Zhang, Y.,Zhang, Y., 2020. lncRNA ZFAS1 improves neuronal injury and inhibits inflammation, oxidative stress, and apoptosis by sponging miR-582 and upregulating NOS3 expression in cerebral ischemia/reperfusion injury. Inflammation 43, 1337-1350
    Zhang, Y.F., Li, X.X., Cao, X.L., Ji, C.C., Gao, X.Y., Gao, D., Han, H., Yu, F.,Zheng, M.H., 2022. MicroRNA-582-5p contributes to the maintenance of neural stem cells through inhibiting secretory protein FAM19A1. Front. Cell. Neurosci. 16, 866020
    Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al., 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun.8, 14049
    Zhou, Y., Song, W.M., Andhey, P.S., Swain, A., Levy, T., Miller, K.R., Poliani, P.L., Cominelli, M., Grover, S., Gilfillan, S., et al., 2020. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat. Med. 26, 131-142
    Zywitza, V., Misios, A., Bunatyan, L., Willnow, T.E.,Rajewsky, N., 2018. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 25, 2457-2469 e2458
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (358) PDF downloads (17) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return