[1] |
An, X., Li, L., Wu, S., 2019. In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models. Protein Cell 10, 450-454.
|
[2] |
Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.,J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
[3] |
Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G., Wandless, T.J., 2006. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995-1004.
|
[4] |
Barling, R.W., Selkon, J.B., 1978. The penetration of antibiotics into cerebrospinal fluid and brain tissue. J. Antimicrob. Chemother. 4, 203-227.
|
[5] |
Barrangou, R., Fremaux, C.,Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., Horvath, P., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
|
[6] |
Charlesworth, C.T., Deshpande, P.S., Dever, D.P., Camarena, J., Lemgart, V.T., Cromer, M.K., Vakulskas, C. A., Collingwood, M.A., Zhang, L., Bode, N.M., et al., 2019. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249-254.
|
[7] |
Chen, J., Lin, F.L., Leung, J.Y.K., Tu, L., Wang, J.H., Chuang, Y.F., Li, F., Shen, H.H., Dusting, G.J., Wong, V.H.Y., et al., 2021. A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization. Angiogenesis 24, 97-110.
|
[8] |
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
|
[9] |
Datta, S., Renwick, M., Chau, V.Q., Zhang, F., Nettesheim, E.R., Lipinski, D.M., Hulleman, J.D., 2018. A destabilizing domain allows for fast, noninvasive, conditional control of protein abundance in the mouse eye - implications for ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 59, 4909-4920.
|
[10] |
Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.C., Gao, C., et al., 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 257.
|
[11] |
Liu, P., Liang, S.Q., Zheng, C., Mintzer, E., Zhao, Y.G., Ponnienselvan, K., Mir, A., Sontheimer, E.J., Gao, G., Flotte, T.R., et al., 2021. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121.
|
[12] |
Oeemig, J.S., Aranko, A.S., Djupsjobacka, J., Heinamaki, K., Iwai, H., 2009. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. 583, 1451-1456.
|
[13] |
Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K.M., Gregg, A., Noggle, S., Tessier-Lavigne, M., 2016. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125-129.
|
[14] |
Schene, I.F., Joore, I.P., Oka, R., Mokry, M., van, Vugt, A.H.M., van, Boxtel, R., van, der, Doef, H.P.J., vander, Laan, L.J.W., Verstegen, M.M.A., van, Hasselt, P.M., et al., 2020. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352.
|
[15] |
Schweitzer, B.I.D.A.P., Bertino, J.R., 1990. Dihydrofolate reductase as a therapeutic target. Faseb. J. 4, 2441-2452.
|
[16] |
Sellmyer, M.A., Chen, L.C., Egeler, E.L., Rakhit, R., Wandless, T.J., 2012. Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One 7, e43297.
|
[17] |
Shah, N.H., Vila-Perello, M., Muir, T.W., 2011. Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew. Chem., Int. Ed. Engl. 50, 6511-6515.
|
[18] |
Vithana, E.N., Abu-Safieh, L., Allen, M.J., Carey, A., Papaioannou, M., Chakarova, C., Al-Maghtheh, M., Ebenezer, N.D., Willis, C., Moore, A.T., et al., 2001. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol. Cell 8, 375-381.
|
[19] |
Wagner, D.L., Amini, L., Wendering, D.J., Burkhardt, L.M., Akyuz, L., Reinke, P., Volk, H.D., Schmueck-Henneresse, M., 2019. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242-248.
|
[20] |
Waseem, N.H., Vaclavik, V., Webster, A., Jenkins, S.A., Bird, A.C., Bhattacharya, S.S., 2007. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 48, 1330-1334.
|