Anderson, S.N., Stitzer, M.C., Brohmmer, A.B., Zhou, P., Noshay, J.M., O'connor, C.H., Hirsch, C.D., et al., 2019. Transposable elements contribute to dynamic genome content in maize. Plant J. 100, 1052-1065
|
Baseggio, M., Murray, M., Wu, D., Ziegler, G., Kaczmar, N., Chamness, J., et al., 2021. Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3 11, jkab186
|
Cao, Y., Zhao, X., Liu, Y., Wang, Y., Wu, W., Jiang, Y., et al., 2019. Genome-wide identification of ZmHMAs and association of natural variation in ZmHMA2 and ZmHMA3 with leaf cadmium accumulation in maize. PeerJ 7, e7877
|
Chang, J.D., Huang, S., Konishi, N., Wang, P., Chen, J., Huang, X.Y., Ma, J.F., et al., 2020. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J. Exp. Bot. 71, 5705-5715
|
Hu, Y.N., Cheng, H.F., Tao, S., 2016. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ. Int. 92-93, 515-532
|
Liu, H.J., Wang, X.Q., Xiao, Y.J., Luo, J.Y., Qiao, F., Yang, W.Y., Zhang, R.Y., et al., 2020. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol. 21, 1-17
|
Lu, C.N., Zhang, L.X., Tang, Z., Huang, X.Y., Ma, J.F., Zhao, F.J., 2019. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environ. Int. 126, 619-626
|
MHPRC., 2012. China national food safety standard: maximum limit of contaminants in food (GB 2762-2012). MHPRC Beijing, China
|
Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Katou, K., et al., 2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 189, 190-199
|
Sasaki, A., Yamaji, N., Ma, J.F., 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 65, 6013-6021
|
Sasaki, A., Yamaji, N., Yokosho, K., Ma, J.F., 2012. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155-2167
|
Tang, B., Luo, M., Zhang, Y., Guo, H., Li, J., Song, W., et al., 2021. Natural variations in the P-type ATPase heavy metal transporter gene ZmHMA3 control cadmium accumulation in maize grains. J. Exp. Bot. 72, 6230-6246
|
Ueno, D., Yamaji, N., Kono, I., Huang, C.F., Ando, T., Yano, M., Ma, J.F., 2010. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA 107, 16500-16505
|
Walley, J.W., Sartor, R.C., Shen, Z.X., Schmitz, R.J., Wu, K.J., Urich, M.A., Nery, J.R., et al., 2016. Integration of omic networks in a developmental atlas of maize. Science 353, 814-818
|
Wang, P., Chen, H.P., Kopittke, P.M., Zhao, F.J., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 249, 1038-1048
|
Wuana, R.A., Okieimen, F.E., 2010. Phytoremediation potential of maize (Zea mays L.). A review. African Journal of General Agriculture 6, 275-287
|
Yang, X.H., Gao, S.B, Xu, S.T., Zhang, Z.X., Prasanna, B.M., Li, L., Li, J.S., et al., 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol.Breeding 28, 511-526
|
Zhao, X.W., Luo, L.X., Cao, Y.H., Liu, Y.J., Li, Y.H., Wu, W.M., Lan, Y.Z., et al., 2018. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics 19, 91
|
Zhao, F.J., Ma, Y.B., Zhu, Y.G., Tang, Z., Mcgrath, S.P., 2015. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750-759
|
Zhao, F.J., Wang, P., 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil 446, 1-21
|