Alcaraz, L.D., Moreno-Hagelsieb, G., Eguiarte, L.E., Souza, V., Herrera-Estrella, L., Olmedo, G., 2010. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11, 332.
|
Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
|
Ambrozova, K., Mandakova, T., Bures, P., Neumann, P., Leitch, I.J., Koblizkova, A., Macas, J., Lysak, M.A., 2011. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 107, 255-268.
|
Athiyannan, N., Abrouk, M., Boshoff, W.H., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
|
Bansal, M., Sharma, M., Kanwar, P., Goyal, A., 2016. Recent advances in proteomics of cereals. Biotechnol. Genet. Eng. Rev. 32, 1-17.
|
Casacuberta, J.M., Jackson, S., Panaud, O., Purugganan, M., Wendel, J. 2016. Evolution of plant phenotypes, from genomes to traits. Genetics 6, 775-778.
|
Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation PLINK:rising to the challenge of larger and richer datasets. Gigascience 4, s13742-015.
|
Chen, W., Wang, W., Peng, M., Gong, L., Gao, Y., Wan, J., Wang, S., Shi, L., Zhou, B., Li, Z., 2016. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7, 1-10.
|
Chen, H., Zeng, Y., Yang, Y., Huang, L., Tang, B., Zhang, H., Hao, F., Liu, W., Li, Y., Liu, Y., 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 11, 1-11.
|
Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li, H., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170-175.
|
Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P. 2014. On the representation of de Bruijn graphs. Paper presented at:International conference on Research in computational molecular biology Springer.
|
Chikhi, R., Limasset, A., Medvedev, P., 2016. Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics 32, i201-i208.
|
Danilevicz, M.F., Fernandez, C.G.T., Marsh, J.I., Bayer, P.E., Edwards, D., 2020. Plant pangenomics:approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18-25.
|
Della Coletta, R., Qiu, Y., Ou, S., Hufford, M.B., Hirsch, C.N., 2021. How the pan-genome is changing crop genomics and improvement. Genome Biol. 22, 1-19.
|
Desta, Z.A., Ortiz, R., 2014. Genomic selection:genome-wide prediction in plant improvement. Trends Plant Sci. 19, 592-601.
|
Dunning, L.T., Olofsson, J.K., Parisod, C., Choudhury, R.R., Moreno-Villena, J.J., Yang, Y., Dionora, J., Quick, W.P., Park, M., Bennetzen, J.L., 2019. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc. Natl. Acad. Sci. 116, 4416-4425.
|
Ebler, J., Clarke, W.E., Rausch, T., Audano, P.A., Houwaart, T., Korbel, J., Eichler, E.E., Zody, M.C., Dilthey, A.T., Marschall, T., 2020. Pangenome-based genome inference. BioRxiv.
|
Finn, R.D., Clements, J., Eddy, S.R., 2011. HMMER web server:interactive sequence similarity searching. Nucleic Acids Res. 39, W29-W37.
|
Fiorani, F., Schurr, U., 2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64, 267-291.
|
Fleischmann, A., Michael, T.P., Rivadavia, F., Sousa, A., Wang, W., Temsch, E.M., Greilhuber, J., Muller, K.F., Heubl, G., 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114, 1651-1663.
|
Food and Agriculture Organization of the United Nations,1995. Staple foods:What do people eat? https://www.fao.org/3/u8480e/u8480e07.htm..
|
Furbank, R.T., Tester, M., 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635-644.
|
Gabur, I., Chawla, H.S., Snowdon, R.J., Parkin, I.A.P., 2019. Connecting genome structural variation with complex traits in crop plants. Theor. Appl. Genet. 132, 733-750.
|
Gage, J.L., Vaillancourt, B., Hamilton, J.P., Manrique-Carpintero, N.C., Gustafson, T.J., Barry, K., Lipzen, A., Tracy, W.F., Mikel, M.A., Kaeppler, S.M., 2019. Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. The plant genome 12.
|
Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D.M., Burzynski-Chang, E.A., Fish, T.L., Stromberg, K.A., Sacks, G.L., 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044-1051.
|
Garrison, E., Siren, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T., Jones, W., Garg, S., Markello, C., Lin, M.F., 2018. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875-879.
|
Golicz, A.A., Batley, J., Edwards, D., 2016a. Towards plant pangenomics. Plant Biotechnol. J. 14, 1099-1105.
|
Golicz, A.A., Bayer, P.E., Barker, G.C., Edger, P.P., Kim, H., Martinez, P.A., Chan, C.K.K., Severn-Ellis, A., McCombie, W.R., Parkin, I.A., 2016b. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 1-8.
|
Golicz, A.A., Bayer, P.E., Bhalla, P.L., Batley, J., Edwards, D., 2020. Pangenomics comes of age:from bacteria to plant and animal applications. Trends Genet. 36, 132-145.
|
Gordon, S.P., Contreras-Moreira, B., Woods, D.P., Des Marais, D.L., Burgess, D., Shu, S., Stritt, C., Roulin, A.C., Schackwitz, W., Tyler, L., 2017. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 1-13.
|
Gui, S., Yang, L., Li, J., Luo, J., Xu, X., Yuan, J., Chen, L., Li, W., Yang, X., Wu, S., 2020. ZEAMAP, a comprehensive database adapted to the maize multi-omics era. IScience 23, 101241.
|
Hirsch, C.N., Foerster, J.M., Johnson, J.M., Sekhon, R.S., Muttoni, G., Vaillancourt, B., Penagaricano, F., Lindquist, E., Pedraza, M.A., Barry, K., 2014. Insights into the maize pan-genome and pan-transcriptome. The Plant Cell 26, 121-135.
|
Hu, X., Xie, W., Wu, C., Xu, S., 2019. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol. J. 17, 2011-2020.
|
Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., Meng, M., et al., 2013. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 4, 1-9.
|
Hubner, S., Bercovich, N., Todesco, M., Mandel, J.R., Odenheimer, J., Ziegler, E., Lee, J.S., Baute, G.J., Owens, G.L., Grassa, C.J., 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 5, 54-62.
|
Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
|
Hurgobin, B., Edwards, D., 2017. SNP discovery using a pangenome:has the single reference approach become obsolete? Biology 6, 21.
|
Ibarra-Laclette, E., Lyons, E., Hernandez-Guzman, G., Perez-Torres, C.A., Carretero-Paulet, L., Chang, T.-H., Lan, T., Welch, A.J., Juarez, M.J.A., Simpson, J., 2013. Architecture and evolution of a minute plant genome. Nature 498, 94-98.
|
Igic, B., Lande, R., Kohn, J.R., 2008. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93-104.
|
Isidro, J., Jannink, J.L., Akdemir, D., Poland, J., Heslot, N., Sorrells, M.E., 2015. Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 128, 145-158.
|
Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Cassagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467.
|
Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C., Lux, T., Kamal, N., Lang, D., Himmelbach, A., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289.
|
Jiao, W.-B., Schneeberger, K., 2017. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 36, 64-70.
|
Johnson, A.L., Govindarajulu, R., Ashman, T.L., 2014. Bioclimatic evaluation of geographical range in Fragaria (Rosaceae):consequences of variation in breeding system, ploidy and species age. Bot. J. Linn. Soc. 176, 99-114.
|
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
|
Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
|
Keller, B., Ariza-Suarez, D., De la Hoz, J., Aparicio, J.S., Portilla-Benavides, A.E., Buendia, H.F., Mayor, V.M., Studer, B., Raatz, B., 2020. Genomic prediction of agronomic traits in common bean (Phaseolus vulgaris L.) under environmental stress. Front. Plant Sci., 1001.
|
Kent, W.J., 2002. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656-664.
|
Khan, A.W., Garg, V., Roorkiwal, M., Golicz, A.A., Edwards, D., Varshney, R.K., 2020. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 25, 148-158.
|
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., 2017. Canu:scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722-736.
|
Krasileva, K.V., 2019. The role of transposable elements and DNA damage repair mechanisms in gene duplications and gene fusions in plant genomes. Curr. Opin. Plant Biol. 48, 18-25.
|
Kuroiwa, T., Ohnuma, M., Imoto, Y., Misumi, O., Nagata, N., Miyakawa, I., Fujishima, M., Yagisawa, F., Kuroiwa, H., 2016. Genome size of the ultrasmall unicellular freshwater green alga, Medakamo hakoo 311, as determined by staining with 4', 6-diamidino-2-phenylindole after microwave oven treatments:II. Comparison with Cyanidioschyzon merolae, Saccharomyces cerevisiae (n, 2n), and Chlorella variabilis. Cytologia 81, 69-76.
|
Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
|
Li, H., Feng, X., Chu, C., 2020. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 21, 1-19.
|
Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., et al., 2021. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol. 22, 119.
|
Li, H., Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., 2022a. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 13, 1-14.
|
Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., 2022b. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
|
Liu, Y., Tian, Z., 2020. From one linear genome to a graph-based pan-genome:a new era for genomics. Sci. China Life Sci. 63, 1938-1941.
|
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
|
Long, Y., Liu, Z., Wang, P., Yang, H., Wang, Y., Zhang, S., Zhang, X., Wang, M., 2021. Disruption of topologically associating domains by structural variations in tetraploid cottons. Genomics 113, 3405-3414.
|
Mace, E.S., Tai, S., Gilding, E.K., Li, Y., Prentis, P.J., Bian, L., Campbell, B.C., Hu, W., Innes, D.J., Han, X., 2013. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat. Commun. 4, 1-9.
|
Mahmoud, M., Gobet, N., Cruz-Davalos, D.I., Mounier, N., Dessimoz, C., Sedlazeck, F.J., 2019. Structural variant calling:the long and the short of it. Genome Biol. 20, 1-14.
|
McClintock, B. 1956. Controlling elements and the gene. Paper presented at:Cold Spring Harbor symposia on quantitative biology Cold Spring Harbor Laboratory Press.
|
McCoy, J.P., 2011. High-content screening:getting more from less. Nat. Methods 8, 390-391.
|
Meuwissen, T.H., Hayes, B.J., Goddard, M., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
|
Miga, K.H., Koren, S., Rhie, A., Vollger, M.R., Gershman, A., Bzikadze, A., Brooks, S., Howe, E., Porubsky, D., Logsdon, G.A., 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79-84.
|
Montenegro, J.D., Golicz, A.A., Bayer, P.E., Hurgobin, B., Lee, H., Chan, C.K.K., Visendi, P., Lai, K., Dolezel, J., Batley, J., 2017. The pangenome of hexaploid bread wheat. The Plant Journal 90, 1007-1013.
|
Morgante, M., De Paoli, E., Radovic, S., 2007. Transposable elements and the plant pan-genomes. Curr. Opin. Plant Biol. 10, 149-155.
|
Myles, C., Wayne, M., 2008. Quantitative trait locus (QTL) analysis. Nature Education 1, 208.
|
Niu, S., Li, J., Bo, W., Yang, W., Zuccolo, A., Giacomello, S., Chen, X., Han, F., Yang, J., Song, Y., 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185, 204-217.
|
Panchy, N., Lehti-Shiu, M., Shiu, S.-H., 2016. Evolution of gene duplication in plants. Plant Physiol. 171, 2294-2316.
|
Parker, C.C., Gopalakrishnan, S., Carbonetto, P., Gonzales, N.M., Leung, E., Park, Y.J., Aryee, E., Davis, J., Blizard, D.A., Ackert-Bicknell, C.L., 2016. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat. Genet. 48, 919-926.
|
Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E., 2017. Genome graphs and the evolution of genome inference. Genome Res. 27, 665-676.
|
Paterson, A.H., Freeling, M., Tang, H., Wang, X., 2010. Insights from the comparison of plant genome sequences. Annu. Rev. Plant Biol. 61, 349-372.
|
Patron, J., Serra-Cayuela, A., Han, B., Li, C., Wishart, D.S., 2019. Assessing the performance of genome-wide association studies for predicting disease risk. PLoS One 14, e0220215.
|
Pellicer, J., Fay, M.F., Leitch, I.J., 2010. The largest eukaryotic genome of them all? Bot. J. Linn. Soc. 164, 10-15.
|
Peng, H., Wang, K., Chen, Z., Cao, Y., Gao, Q., Li, Y., Li, X., Lu, H., Du, H., Lu, M., 2020. MBKbase for rice:an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 48, D1085-D1092.
|
Plissonneau, C., Hartmann, F.E., Croll, D., 2018. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 16, 5.
|
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
|
Qiao, Q., Edger, P.P., Xue, L., Qiong, L., Lu, J., Zhang, Y., Cao, Q., Yocca, A.E., Platts, A.E., Knapp, S.J., 2021. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc. Natl. Acad. Sci. 118.
|
Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558.
|
Rabbani, L., Muller, J., Weigel, D., 2020. An algorithm to build a multi-genome reference. BioRxiv.
|
Rasko, D.A., Rosovitz, M.J., Myers, G.S., Mongodin, E.F., Fricke, W.F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., et al., 2008. The pangenome structure of Escherichia coli:comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881-6893.
|
Salman-Minkov, A., Sabath, N., Mayrose, I., 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2, 16115.
|
Schatz, M.C., Maron, L.G., Stein, J.C., Wences, A.H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., 2014. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol. 15, 506.
|
Schulz, T., Wittler, R., Rahmann, S., Hach, F., Stoye, J., 2021. Detecting high-scoring local alignments in pangenome graphs. Bioinformatics 37, 2266-2274.
|
Shlemov, A., Korobeynikov, A., 2019. Path Racer:Racing Profile HMM Paths on Assembly Graph. Paper presented at:International Conference on Algorithms for Computational Biology Springer.
|
Sibbesen, J.A., Eizenga, J.M., Novak, A.M., Siren, J., Chang, X., Garrison, E., Paten, B., 2021. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. bioRxiv.
|
Snipen, L., Almoey, T., Ussery, D.W., 2009. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10, 385.
|
Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804-1806.
|
Song, J.-M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34-45.
|
Song, J.M., Liu, D.X., Xie, W.Z., Yang, Z., Guo, L., Liu, K., Yang, Q.Y., Chen, L.L., 2021. BnPIR:Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol. J. 19, 412.
|
Sun, X., Jiao, C., Schwaninger, H., Chao, C.T., Ma, Y., Duan, N., Khan, A., Ban, S., Xu, K., Cheng, L., et al., 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423-1432.
|
Sun, Y., Shang, L., Zhu, Q.-H., Fan, L., Guo, L., 2021. Twenty years of plant genome sequencing:Achievements and challenges. Trends Plant Sci. 27, 391-401.
|
Sun, H., Jiao, W.B., Krause, K., Campoy, J.A., Goel, M., Folz-Donahue, K., Kukat, C., Huettel, B., Schneeberger, K., 2022. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 54, 342-348.
|
Tahir Ul Qamar, M., Zhu, X., Khan, M.S., Xing, F., Chen, L.L., 2020. Pan-genome:A promising resource for noncoding RNA discovery in plants. Plant Genome 13, e20046.
|
Takayama, S., Isogai, A., 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467-489.
|
Tao, Y., Zhao, X., Mace, E., Henry, R., Jordan, D., 2019. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 12, 156-169.
|
Tay Fernandez, C.G., Nestor, B.J., Danilevicz, M.F., Marsh, J.I., Petereit, J., Bayer, P.E., Batley, J., Edwards, D., 2022. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int. J. Mol. Sci. 23, 2276.
|
Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. 102, 13950-13955.
|
Torkamaneh, D., Lemay, M.A., Belzile, F., 2021. The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnol. J. 19, 1852.
|
Varshney, R.K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M., Singh, N.P., Du, X., Upadhyaya, H.D., Khan, A.W., et al., 2021. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622-627.
|
Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
|
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49.
|
Willis, K., 2017. State of the world's plants 2017. Royal Botanics Gardens Kew.
|
Wong, C., Bernardo, R., 2008. Genomewide selection in oil palm:increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116, 815-824.
|
Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
|
Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105-111.
|
Xu, S., Zhu, D., Zhang, Q., 2014. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc. Natl. Acad. Sci. 111, 12456-12461.
|
Yu, J., Tehrim, S., Zhang, F., Tong, C., Huang, J., Cheng, X., Dong, C., Zhou, Y., Qin, R., Hua, W., 2014. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC genomics 15, 1-18.
|
Yu, Q.-h., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., 2017. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 7, 1-9.
|
Yu, J., Golicz, A.A., Lu, K., Dossa, K., Zhang, Y., Chen, J., Wang, L., You, J., Fan, D., Edwards, D., 2019. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol. J. 17, 881-892.
|
Yu, X., Xiao, J., Chen, S., Yu, Y., Ma, J., Lin, Y., Li, R., Lin, J., Fu, Z., Zhou, Q., 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nat. Commun. 11, 1-14.
|
Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
|
Zhang, J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., Zhu, F., Jones, T., Zhu, X., Bowers, J., et al., 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565-1573.
|
Zhang, L., Ren, Y., Yang, T., Li, G., Chen, J., Gschwend, A.R., Yu, Y., Hou, G., Zi, J., Zhou, R., 2019. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679-690.
|
Zhang, C., Yang, Z., Tang, D., Zhu, Y., Wang, P., Li, D., Zhu, G., Xiong, X., Shang, Y., Li, C., 2021a. Genome design of hybrid potato. Cell 184, 3873-3883.
|
Zhang, Y., Shen, Q., Leng, L., Zhang, D., Chen, S., Shi, Y., Ning, Z., Chen, S., 2021b. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nat. Commun. 12, 1-13.
|
Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278-284.
|
Zhou, X., Stephens, M., 2014. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 11, 407-409.
|
Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414.
|
Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249-261
|