5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Plant pan-genomics: recent advances, new challenges, and roads ahead

doi: 10.1016/j.jgg.2022.06.004
Funds:

This work was supported by the National Natural Science Foundation of China (32100500), the Natural Science Foundation of Hebei Province (C2021201048) and Interdisciplinary Research Program of Natural Science of Hebei University. We thank Margaret Biswas, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

  • Received Date: 2022-04-21
  • Accepted Date: 2022-06-10
  • Rev Recd Date: 2022-06-09
  • Publish Date: 2022-06-21
  • Pan-genomics can encompass most of the genetic diversity of a species or population and has proved to be a powerful tool for studying genomic evolution and the origin and domestication of species, and for providing information for plant improvement. Plant genomics has greatly progressed because of improvements in sequencing technologies and the rapid reduction of sequencing costs. Nevertheless, pan-genomics still presents many challenges, including computationally intensive assembly methods, high costs with large numbers of samples, ineffective integration of big data, and difficulty in applying it to downstream multi-omics analysis and breeding research. In this review, we summarize the definition and recent achievements of plant pan-genomics, computational technologies used for pan-genome construction, and the applications of pan-genomes in plant genomics and molecular breeding. We also discuss challenges and perspectives for future pan-genomics studies and provide a detailed pipeline for sample selection, genome assembly and annotation, structural variation identification, and construction and application of graph-based pan-genomes. The aim is to provide important guidance for plant pan-genome research and a better understanding of the genetic basis of genome evolution, crop domestication, and phenotypic diversity for future studies.
  • loading
  • Alcaraz, L.D., Moreno-Hagelsieb, G., Eguiarte, L.E., Souza, V., Herrera-Estrella, L., Olmedo, G., 2010. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11, 332.
    Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
    Ambrozova, K., Mandakova, T., Bures, P., Neumann, P., Leitch, I.J., Koblizkova, A., Macas, J., Lysak, M.A., 2011. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 107, 255-268.
    Athiyannan, N., Abrouk, M., Boshoff, W.H., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
    Bansal, M., Sharma, M., Kanwar, P., Goyal, A., 2016. Recent advances in proteomics of cereals. Biotechnol. Genet. Eng. Rev. 32, 1-17.
    Casacuberta, J.M., Jackson, S., Panaud, O., Purugganan, M., Wendel, J. 2016. Evolution of plant phenotypes, from genomes to traits. Genetics 6, 775-778.
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation PLINK:rising to the challenge of larger and richer datasets. Gigascience 4, s13742-015.
    Chen, W., Wang, W., Peng, M., Gong, L., Gao, Y., Wan, J., Wang, S., Shi, L., Zhou, B., Li, Z., 2016. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7, 1-10.
    Chen, H., Zeng, Y., Yang, Y., Huang, L., Tang, B., Zhang, H., Hao, F., Liu, W., Li, Y., Liu, Y., 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 11, 1-11.
    Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li, H., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170-175.
    Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P. 2014. On the representation of de Bruijn graphs. Paper presented at:International conference on Research in computational molecular biology Springer.
    Chikhi, R., Limasset, A., Medvedev, P., 2016. Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics 32, i201-i208.
    Danilevicz, M.F., Fernandez, C.G.T., Marsh, J.I., Bayer, P.E., Edwards, D., 2020. Plant pangenomics:approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18-25.
    Della Coletta, R., Qiu, Y., Ou, S., Hufford, M.B., Hirsch, C.N., 2021. How the pan-genome is changing crop genomics and improvement. Genome Biol. 22, 1-19.
    Desta, Z.A., Ortiz, R., 2014. Genomic selection:genome-wide prediction in plant improvement. Trends Plant Sci. 19, 592-601.
    Dunning, L.T., Olofsson, J.K., Parisod, C., Choudhury, R.R., Moreno-Villena, J.J., Yang, Y., Dionora, J., Quick, W.P., Park, M., Bennetzen, J.L., 2019. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc. Natl. Acad. Sci. 116, 4416-4425.
    Ebler, J., Clarke, W.E., Rausch, T., Audano, P.A., Houwaart, T., Korbel, J., Eichler, E.E., Zody, M.C., Dilthey, A.T., Marschall, T., 2020. Pangenome-based genome inference. BioRxiv.
    Finn, R.D., Clements, J., Eddy, S.R., 2011. HMMER web server:interactive sequence similarity searching. Nucleic Acids Res. 39, W29-W37.
    Fiorani, F., Schurr, U., 2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64, 267-291.
    Fleischmann, A., Michael, T.P., Rivadavia, F., Sousa, A., Wang, W., Temsch, E.M., Greilhuber, J., Muller, K.F., Heubl, G., 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114, 1651-1663.
    Food and Agriculture Organization of the United Nations,1995. Staple foods:What do people eat? https://www.fao.org/3/u8480e/u8480e07.htm..
    Furbank, R.T., Tester, M., 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635-644.
    Gabur, I., Chawla, H.S., Snowdon, R.J., Parkin, I.A.P., 2019. Connecting genome structural variation with complex traits in crop plants. Theor. Appl. Genet. 132, 733-750.
    Gage, J.L., Vaillancourt, B., Hamilton, J.P., Manrique-Carpintero, N.C., Gustafson, T.J., Barry, K., Lipzen, A., Tracy, W.F., Mikel, M.A., Kaeppler, S.M., 2019. Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. The plant genome 12.
    Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D.M., Burzynski-Chang, E.A., Fish, T.L., Stromberg, K.A., Sacks, G.L., 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044-1051.
    Garrison, E., Siren, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T., Jones, W., Garg, S., Markello, C., Lin, M.F., 2018. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875-879.
    Golicz, A.A., Batley, J., Edwards, D., 2016a. Towards plant pangenomics. Plant Biotechnol. J. 14, 1099-1105.
    Golicz, A.A., Bayer, P.E., Barker, G.C., Edger, P.P., Kim, H., Martinez, P.A., Chan, C.K.K., Severn-Ellis, A., McCombie, W.R., Parkin, I.A., 2016b. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 1-8.
    Golicz, A.A., Bayer, P.E., Bhalla, P.L., Batley, J., Edwards, D., 2020. Pangenomics comes of age:from bacteria to plant and animal applications. Trends Genet. 36, 132-145.
    Gordon, S.P., Contreras-Moreira, B., Woods, D.P., Des Marais, D.L., Burgess, D., Shu, S., Stritt, C., Roulin, A.C., Schackwitz, W., Tyler, L., 2017. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 1-13.
    Gui, S., Yang, L., Li, J., Luo, J., Xu, X., Yuan, J., Chen, L., Li, W., Yang, X., Wu, S., 2020. ZEAMAP, a comprehensive database adapted to the maize multi-omics era. IScience 23, 101241.
    Hirsch, C.N., Foerster, J.M., Johnson, J.M., Sekhon, R.S., Muttoni, G., Vaillancourt, B., Penagaricano, F., Lindquist, E., Pedraza, M.A., Barry, K., 2014. Insights into the maize pan-genome and pan-transcriptome. The Plant Cell 26, 121-135.
    Hu, X., Xie, W., Wu, C., Xu, S., 2019. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol. J. 17, 2011-2020.
    Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., Meng, M., et al., 2013. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 4, 1-9.
    Hubner, S., Bercovich, N., Todesco, M., Mandel, J.R., Odenheimer, J., Ziegler, E., Lee, J.S., Baute, G.J., Owens, G.L., Grassa, C.J., 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 5, 54-62.
    Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
    Hurgobin, B., Edwards, D., 2017. SNP discovery using a pangenome:has the single reference approach become obsolete? Biology 6, 21.
    Ibarra-Laclette, E., Lyons, E., Hernandez-Guzman, G., Perez-Torres, C.A., Carretero-Paulet, L., Chang, T.-H., Lan, T., Welch, A.J., Juarez, M.J.A., Simpson, J., 2013. Architecture and evolution of a minute plant genome. Nature 498, 94-98.
    Igic, B., Lande, R., Kohn, J.R., 2008. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93-104.
    Isidro, J., Jannink, J.L., Akdemir, D., Poland, J., Heslot, N., Sorrells, M.E., 2015. Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 128, 145-158.
    Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Cassagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467.
    Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C., Lux, T., Kamal, N., Lang, D., Himmelbach, A., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289.
    Jiao, W.-B., Schneeberger, K., 2017. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 36, 64-70.
    Johnson, A.L., Govindarajulu, R., Ashman, T.L., 2014. Bioclimatic evaluation of geographical range in Fragaria (Rosaceae):consequences of variation in breeding system, ploidy and species age. Bot. J. Linn. Soc. 176, 99-114.
    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
    Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
    Keller, B., Ariza-Suarez, D., De la Hoz, J., Aparicio, J.S., Portilla-Benavides, A.E., Buendia, H.F., Mayor, V.M., Studer, B., Raatz, B., 2020. Genomic prediction of agronomic traits in common bean (Phaseolus vulgaris L.) under environmental stress. Front. Plant Sci., 1001.
    Kent, W.J., 2002. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656-664.
    Khan, A.W., Garg, V., Roorkiwal, M., Golicz, A.A., Edwards, D., Varshney, R.K., 2020. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 25, 148-158.
    Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., 2017. Canu:scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722-736.
    Krasileva, K.V., 2019. The role of transposable elements and DNA damage repair mechanisms in gene duplications and gene fusions in plant genomes. Curr. Opin. Plant Biol. 48, 18-25.
    Kuroiwa, T., Ohnuma, M., Imoto, Y., Misumi, O., Nagata, N., Miyakawa, I., Fujishima, M., Yagisawa, F., Kuroiwa, H., 2016. Genome size of the ultrasmall unicellular freshwater green alga, Medakamo hakoo 311, as determined by staining with 4', 6-diamidino-2-phenylindole after microwave oven treatments:II. Comparison with Cyanidioschyzon merolae, Saccharomyces cerevisiae (n, 2n), and Chlorella variabilis. Cytologia 81, 69-76.
    Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
    Li, H., Feng, X., Chu, C., 2020. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 21, 1-19.
    Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., et al., 2021. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol. 22, 119.
    Li, H., Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., 2022a. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 13, 1-14.
    Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., 2022b. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
    Liu, Y., Tian, Z., 2020. From one linear genome to a graph-based pan-genome:a new era for genomics. Sci. China Life Sci. 63, 1938-1941.
    Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
    Long, Y., Liu, Z., Wang, P., Yang, H., Wang, Y., Zhang, S., Zhang, X., Wang, M., 2021. Disruption of topologically associating domains by structural variations in tetraploid cottons. Genomics 113, 3405-3414.
    Mace, E.S., Tai, S., Gilding, E.K., Li, Y., Prentis, P.J., Bian, L., Campbell, B.C., Hu, W., Innes, D.J., Han, X., 2013. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat. Commun. 4, 1-9.
    Mahmoud, M., Gobet, N., Cruz-Davalos, D.I., Mounier, N., Dessimoz, C., Sedlazeck, F.J., 2019. Structural variant calling:the long and the short of it. Genome Biol. 20, 1-14.
    McClintock, B. 1956. Controlling elements and the gene. Paper presented at:Cold Spring Harbor symposia on quantitative biology Cold Spring Harbor Laboratory Press.
    McCoy, J.P., 2011. High-content screening:getting more from less. Nat. Methods 8, 390-391.
    Meuwissen, T.H., Hayes, B.J., Goddard, M., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
    Miga, K.H., Koren, S., Rhie, A., Vollger, M.R., Gershman, A., Bzikadze, A., Brooks, S., Howe, E., Porubsky, D., Logsdon, G.A., 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79-84.
    Montenegro, J.D., Golicz, A.A., Bayer, P.E., Hurgobin, B., Lee, H., Chan, C.K.K., Visendi, P., Lai, K., Dolezel, J., Batley, J., 2017. The pangenome of hexaploid bread wheat. The Plant Journal 90, 1007-1013.
    Morgante, M., De Paoli, E., Radovic, S., 2007. Transposable elements and the plant pan-genomes. Curr. Opin. Plant Biol. 10, 149-155.
    Myles, C., Wayne, M., 2008. Quantitative trait locus (QTL) analysis. Nature Education 1, 208.
    Niu, S., Li, J., Bo, W., Yang, W., Zuccolo, A., Giacomello, S., Chen, X., Han, F., Yang, J., Song, Y., 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185, 204-217.
    Panchy, N., Lehti-Shiu, M., Shiu, S.-H., 2016. Evolution of gene duplication in plants. Plant Physiol. 171, 2294-2316.
    Parker, C.C., Gopalakrishnan, S., Carbonetto, P., Gonzales, N.M., Leung, E., Park, Y.J., Aryee, E., Davis, J., Blizard, D.A., Ackert-Bicknell, C.L., 2016. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat. Genet. 48, 919-926.
    Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E., 2017. Genome graphs and the evolution of genome inference. Genome Res. 27, 665-676.
    Paterson, A.H., Freeling, M., Tang, H., Wang, X., 2010. Insights from the comparison of plant genome sequences. Annu. Rev. Plant Biol. 61, 349-372.
    Patron, J., Serra-Cayuela, A., Han, B., Li, C., Wishart, D.S., 2019. Assessing the performance of genome-wide association studies for predicting disease risk. PLoS One 14, e0220215.
    Pellicer, J., Fay, M.F., Leitch, I.J., 2010. The largest eukaryotic genome of them all? Bot. J. Linn. Soc. 164, 10-15.
    Peng, H., Wang, K., Chen, Z., Cao, Y., Gao, Q., Li, Y., Li, X., Lu, H., Du, H., Lu, M., 2020. MBKbase for rice:an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 48, D1085-D1092.
    Plissonneau, C., Hartmann, F.E., Croll, D., 2018. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 16, 5.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
    Qiao, Q., Edger, P.P., Xue, L., Qiong, L., Lu, J., Zhang, Y., Cao, Q., Yocca, A.E., Platts, A.E., Knapp, S.J., 2021. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc. Natl. Acad. Sci. 118.
    Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558.
    Rabbani, L., Muller, J., Weigel, D., 2020. An algorithm to build a multi-genome reference. BioRxiv.
    Rasko, D.A., Rosovitz, M.J., Myers, G.S., Mongodin, E.F., Fricke, W.F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., et al., 2008. The pangenome structure of Escherichia coli:comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881-6893.
    Salman-Minkov, A., Sabath, N., Mayrose, I., 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2, 16115.
    Schatz, M.C., Maron, L.G., Stein, J.C., Wences, A.H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., 2014. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol. 15, 506.
    Schulz, T., Wittler, R., Rahmann, S., Hach, F., Stoye, J., 2021. Detecting high-scoring local alignments in pangenome graphs. Bioinformatics 37, 2266-2274.
    Shlemov, A., Korobeynikov, A., 2019. Path Racer:Racing Profile HMM Paths on Assembly Graph. Paper presented at:International Conference on Algorithms for Computational Biology Springer.
    Sibbesen, J.A., Eizenga, J.M., Novak, A.M., Siren, J., Chang, X., Garrison, E., Paten, B., 2021. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. bioRxiv.
    Snipen, L., Almoey, T., Ussery, D.W., 2009. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10, 385.
    Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804-1806.
    Song, J.-M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34-45.
    Song, J.M., Liu, D.X., Xie, W.Z., Yang, Z., Guo, L., Liu, K., Yang, Q.Y., Chen, L.L., 2021. BnPIR:Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol. J. 19, 412.
    Sun, X., Jiao, C., Schwaninger, H., Chao, C.T., Ma, Y., Duan, N., Khan, A., Ban, S., Xu, K., Cheng, L., et al., 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423-1432.
    Sun, Y., Shang, L., Zhu, Q.-H., Fan, L., Guo, L., 2021. Twenty years of plant genome sequencing:Achievements and challenges. Trends Plant Sci. 27, 391-401.
    Sun, H., Jiao, W.B., Krause, K., Campoy, J.A., Goel, M., Folz-Donahue, K., Kukat, C., Huettel, B., Schneeberger, K., 2022. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 54, 342-348.
    Tahir Ul Qamar, M., Zhu, X., Khan, M.S., Xing, F., Chen, L.L., 2020. Pan-genome:A promising resource for noncoding RNA discovery in plants. Plant Genome 13, e20046.
    Takayama, S., Isogai, A., 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467-489.
    Tao, Y., Zhao, X., Mace, E., Henry, R., Jordan, D., 2019. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 12, 156-169.
    Tay Fernandez, C.G., Nestor, B.J., Danilevicz, M.F., Marsh, J.I., Petereit, J., Bayer, P.E., Batley, J., Edwards, D., 2022. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int. J. Mol. Sci. 23, 2276.
    Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. 102, 13950-13955.
    Torkamaneh, D., Lemay, M.A., Belzile, F., 2021. The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnol. J. 19, 1852.
    Varshney, R.K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M., Singh, N.P., Du, X., Upadhyaya, H.D., Khan, A.W., et al., 2021. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622-627.
    Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
    Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49.
    Willis, K., 2017. State of the world's plants 2017. Royal Botanics Gardens Kew.
    Wong, C., Bernardo, R., 2008. Genomewide selection in oil palm:increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116, 815-824.
    Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
    Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105-111.
    Xu, S., Zhu, D., Zhang, Q., 2014. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc. Natl. Acad. Sci. 111, 12456-12461.
    Yu, J., Tehrim, S., Zhang, F., Tong, C., Huang, J., Cheng, X., Dong, C., Zhou, Y., Qin, R., Hua, W., 2014. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC genomics 15, 1-18.
    Yu, Q.-h., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., 2017. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 7, 1-9.
    Yu, J., Golicz, A.A., Lu, K., Dossa, K., Zhang, Y., Chen, J., Wang, L., You, J., Fan, D., Edwards, D., 2019. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol. J. 17, 881-892.
    Yu, X., Xiao, J., Chen, S., Yu, Y., Ma, J., Lin, Y., Li, R., Lin, J., Fu, Z., Zhou, Q., 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nat. Commun. 11, 1-14.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Zhang, J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., Zhu, F., Jones, T., Zhu, X., Bowers, J., et al., 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565-1573.
    Zhang, L., Ren, Y., Yang, T., Li, G., Chen, J., Gschwend, A.R., Yu, Y., Hou, G., Zi, J., Zhou, R., 2019. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679-690.
    Zhang, C., Yang, Z., Tang, D., Zhu, Y., Wang, P., Li, D., Zhu, G., Xiong, X., Shang, Y., Li, C., 2021a. Genome design of hybrid potato. Cell 184, 3873-3883.
    Zhang, Y., Shen, Q., Leng, L., Zhang, D., Chen, S., Shi, Y., Ning, Z., Chen, S., 2021b. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nat. Commun. 12, 1-13.
    Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278-284.
    Zhou, X., Stephens, M., 2014. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 11, 407-409.
    Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414.
    Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249-261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (486) PDF downloads (66) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return