5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 8
Aug.  2022
Turn off MathJax
Article Contents

From plant immunity to crop disease resistance

doi: 10.1016/j.jgg.2022.06.003
Funds:

The work was supported by grants from National Key R&

D Program of China (2021YFA1300701) (to J.-M.Z.), the National Natural Science Foundation of China (31825022 and 32121003) (to X.W.C.), the Hainan Excellent Talent Team (to J.-M.Z.), and the State Key Laboratory of Plant Genomics (SKLPG2016B-2) (to J.-M.Z.), the National Natural Science Foundation of China (32072407) (to X.B.Z.).

  • Received Date: 2022-05-06
  • Accepted Date: 2022-06-08
  • Rev Recd Date: 2022-06-07
  • Publish Date: 2022-06-18
  • Plant diseases caused by diverse pathogens lead to a serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease-resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
  • loading
  • Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., Peleg, Z., 2014. Plant domestication versus crop evolution:a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351-360.
    Ai, G., Liu, J., Fu, X., Li, T., Zhu, H., Zhai, Y., Xia, C., Pan, W., Li, J., Jing, M., et al., 2022. Making use of plant uORFs to control transgene translation in response to pathogen attack. BioDes. Res. 2022, 9820540.
    Armstrong, M.R., Vossen, J., Lim, T.Y., Hutten, R.C.B., Xu, J., Strachan, S.M., Harrower, B., Champouret, N., Gilroy, E.M., Hein, I., 2019. Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol. J. 17, 540-549.
    Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., et al., 2019. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139-143.
    Bai, Y., Pavan, S., Zheng, Z., Zappel, N.F., Reinstädler, A., Lotti, C., De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R., et al., 2008. Naturally occurring broadspectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol. Plant Microbe Interact. 21, 30-39.
    Barragan, A.C., Weigel, D., 2021. Plant NLR diversity:the known unknowns of panNLRomes. Plant Cell 33, 814-831.
    Bart, R., Cohn, M., Kassen, A., McCallum Emily, J., Shybut, M., Petriello, A., Krasileva, K., Dahlbeck, D., Medina, C., Alicai, T., et al., 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. U. S. A. 109, E1972-E1979.
    Bastet, A., Lederer, B., Giovinazzo, N., Arnoux, X., German-Retana, S., Reinbold, C., Brault, V., Garcia, D., Djennane, S., Gersch, S., et al., 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol. J. 16, 1569-1581.
    Bhat, R.A., Miklis, M., Schmelzer, E., Schulze-Lefert, P., Panstruga, R., 2005. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. U. S. A. 102, 3135-3140.
    Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541.
    Blanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J., Koebnik, R., 2017. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15, 306-317.
    Bohra, A., Kilian, B., Sivasankar, S., Caccamo, M., Mba, C., McCouch, S.R., Varshney, R.K., 2022. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412-431.
    Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., et al., 1997. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell 88, 695-705.
    Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., et al., 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1- CO39 by direct binding. Plant Cell 25, 1463-1481.
    Cesari, S., Xi, Y., Declerck, N., Chalvon, V., Mammri, L., Pugnière, M., Henriquet, C., de Guillen, K., Chochois, V., Padilla, A., et al., 2022. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat. Commun. 13, 1524.
    Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., Gal-On, A., 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140-1153.
    Chen, X., Liu, P., Mei, L., He, X., Chen, L., Liu, H., Shen, S., Ji, Z., Zheng, X., Zhang, Y., et al., 2021. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun. 2, 100143.
    Cruz, C.M.V., Bai, J., Ona, I., Leung, H., Nelson, R.J., Mew, T.-W., Leach, J.E., 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc. Natl. Acad. Sci. U. S. A. 97, 13500-13505.
    Damalas, C.A., Eleftherohorinos, I.G., 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402-1419.
    De la Concepcion, J.C., Franceschetti, M., MacLean, D., Terauchi, R., Kamoun, S., Banfield, M.J., 2019. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8, e47713.
    De la Concepcion, J.C., Maidment, J.H.R., Longya, A., Xiao, G., Franceschetti, M., Banfield, M.J., 2021a. The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface. PLoS Pathog. 17, e1009368.
    De la Concepcion, J.C., Vega Benjumea, J., Bialas, A., Terauchi, R., Kamoun, S., Banfield, M.J., 2021b. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. eLife 10, e71662.
    DeFalco, T.A., Zipfel, C., 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449-3467.
    Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al., 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965.
    Deng, Y., Ning, Y., Yang, D.L., Zhai, K., Wang, G.L., He, Z., 2020. Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Mol. Plant 13, 1402-1419.
    DeYoung, B.J., Qi, D., Kim, S.-H., Burke, T.P., Innes, R.W., 2012. Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cell. Microbiol. 14, 1071-1084.
    Dodds, P.N., Lawrence, G.J., Catanzariti, A.-M., Teh, T., Wang, C.I.A., Ayliffe, M.A., Kobe, B., Ellis, J.G., 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. U. S. A. 103, 8888-8893.
    Dou, D., Zhou, J.-M., 2012. Phytopathogen effectors subverting host immunity:different foes, similar battleground. Cell Host Microbe 12, 484-495.
    Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L.C.P., Zhou, J., Liebrand, T.W.H., Xie, C., Govers, F., Robatzek, S., et al., 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1, 15034.
    Duxbury, Z., Wu, C.-H., Ding, P., 2021. A comparative overview of the intracellular guardians of plants and animals:NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184.
    Ellis, J.G., Lagudah, E.S., Spielmeyer, W., Dodds, P.N., 2014. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5, 641.
    Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., et al., 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034.
    FAO, 2010. The second report on the state of the world's plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.
    Frailie, T.B., Innes, R.W., 2021. Engineering healthy crops:molecular strategies for enhancing the plant immune system. Curr. Opin. Biotechnol. 70, 151e157.
    Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., Dubcovsky, J., 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357-1360.
    Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R., Yano, M., 2015. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 5, 7773.
    Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al., 2021. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391e5404.
    Garcia-Ruiz, H., Szurek, B., Van den Ackerveken, G., 2021. Stop helping pathogens:engineering plant susceptibility genes for durable resistance. Curr. Opin. Biotechnol. 70, 187e195.
    Garrett, K.A., Mundt, C.C., 2000. Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology 90, 1307e1312.
    Ghislain, M., Byarugaba, A.A., Magembe, E., Njoroge, A., Rivera, C., Román, M.L., Tovar, J.C., Gamboa, S., Forbes, G.A., Kreuze, J.F., et al., 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol. J. 17, 1119e1129.
    Gong, Z., Qi, J., Hu, M., Bi, G., Zhou, J.-M., Han, G.-Z., 2022. The origin and evolution of a plant resistosome. Plant Cell 34, 1600-1620.
    Grund, E., Tremousaygue, D., Deslandes, L., 2019. Plant NLRs with integrated domains:unity makes strength. Plant Physiol. 179, 1227-1235.
    Gust, A.A., Pruitt, R., Nürnberger, T., 2017. Sensing danger:key to activating plant immunity. Trends Plant Sci. 22, 779-791.
    Hayashi, N., Inoue, H., Kato, T., Funao, T., Shirota, M., Shimizu, T., Kanamori, H., Yamane, H., Hayano-Saito, Y., Matsumoto, T., et al., 2010. Durable panicle blastresistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 64, 498-510.
    Horsefield, S., Burdett, H., Zhang, X., Manik, M.K., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J.-S., Rank, M.X., et al., 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793-799.
    Hou, S., Liu, D., He, P., 2021. Phytocytokines function as immunological modulators of plant immunity. Stress Biol. 1, 8.
    Huot, B., Yao, J., Montgomery, B.L., He, S.Y., 2014. Growth-defense tradeoffs in plants:a balancing act to optimize fitness. Mol. Plant 7, 1267-1287.
    Inoue, H., Hayashi, N., Matsushita, A., Liu, X.Q., Nakayama, A., Sugano, S., Jiang, C.- J., Takatsuji, H., 2013. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 110, 9577-9582.
    Jacob, P., Kim Nak, H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant "helper" immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425.
    Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.
    Johal, G.S., Briggs, S.P., 1992. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258, 985-987.
    Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329.
    Jones, J.D.G., Vance, R.E., Dangl, J.L., 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.
    Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F., Dangl, J.L., 2019. Help wanted:helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82-94. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
    Jupe, F., Witek, K., Verweij, W., Śliwka, J., Pritchard, L., Etherington, G.J., Maclean, D., Cock, P.J., Leggett, R.M., Bryan, G.J., Cardle, L., Hein, I., Jones, J.D.G., 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530-544.
    Karasov, T.L., Chae, E., Herman, J.J., Bergelson, J., 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29, 666-680.
    Kim, S.H., Qi, D., Ashfield, T., Helm, M., Innes, R.W., 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351, 684-687.
    Kourelis, J., Marchal, C., Kamoun, S., 2021. NLR immune receptor-nanobody fusions confer plant disease resistance. bioRxiv. https://doi.org/10.1101/2021.10.24.465418.
    Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B., 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360-1363.
    Krattinger, S.G., Kang, J., Bräunlich, S., Boni, R., Chauhan, H., Selter, L.L., Robinson, M.D., Schmid, M.W., Wiederhold, E., Hensel, G., et al., 2019. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol. 223, 853-866.
    Kusch, S., Panstruga, R., 2017. mlo-based resistance:an apparently universal "weapon" to defeat powdery mildew disease. Mol. Plant Microbe Interact. 30, 179-189.
    Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., Van Esse, H.P., Smoker, M., Rallapalli, G., Thomma, B.P., Staskawicz, B., et al., 2010. Interfamily transfer of a plant pattern-recognition receptor confers broadspectrum bacterial resistance. Nat. Biotechnol. 28, 365-369.
    Laflamme, B., Dillon, M.M., Martel, A., Almeida, R.N.D., Desveaux, D., Guttman, D.S., 2020. The pan-genome effector-triggered immunity landscape of a hostpathogen interaction. Science 367, 763-768.
    Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., et al., 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074-1088.
    Leach, J.E., Vera Cruz, C.M., Bai, J., Leung, H., 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39, 187-224.
    Lee, S., Whitaker, V.M., Hutton, S.F., 2016. Mini review:potential applications of nonhost resistance for crop improvement. Front. Plant Sci. 7, 997.
    Lewis, J.D., Wan, J., Ford, R., Gong, Y., Fung, P., Nahal, H., Wang, P.W., Desveaux, D., Guttman, D.S., 2012. Quantitative interactor screening with nextgeneration sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genom. 13, 8.
    Li, Z., Xu, Y., 2022. Bulk segregation analysis in the NGS era:a review of its teenage years. Plant J. 109, 1355-1374.
    Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., et al., 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114-126.
    Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., Xu, C., 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160-1163.
    Li, W., Chern, M., Yin, J., Wang, J., Chen, X., 2019. Recent advances in broadspectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 50, 114-120.
    Li, W., Deng, Y., Ning, Y., He, Z., Wang, G.L., 2020. Exploiting broad-spectrum disease resistance in crops:from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575-603.
    Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al., 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
    Liang, X., Zhou, J.-M., 2018. Receptor-like cytoplasmic kinases:central players in plant receptor kinase-mediated signalling. Annu. Rev. Plant Biol. 69, 267-299.
    Lin, X., Armstrong, M., Baker, K., Wouters, D., Visser, R.G.F., Wolters, P.J., Hein, I., Vleeshouwers, V.G., 2020. RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes. New Phytol. 227, 1264-1276.
    Lin, H., Wang, M., Chen, Y., Nomura, K., Hui, S., Gui, J., Zhang, X., Wu, Y., Liu, J., Li, Q., et al., 2022. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Sci. Adv. 8, eabg8723.
    Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al., 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5, 389-400.
    Liu, X., Ao, K., Yao, J., Zhang, Y., Li, X., 2021a. Engineering plant disease resistance against biotrophic pathogens. Curr. Opin. Plant Biol. 60, 101987.
    Liu, Y., Zhang, X., Yuan, G., Wang, D., Zheng, Y., Ma, M., Guo, L., Bhadauria, V., Peng, Y.L., Liu, J., 2021b. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc. Natl. Acad. Sci. U. S. A. 118, e2110751118.
    Luo, M., Xie, L., Chakraborty, S., Wang, A., Matny, O., Jugovich, M., Kolmer, J.A., Richardson, T., Bhatt, D., Hoque, M., et al., 2021. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561-566.
    Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., et al., 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eab-3069.
    Martel, A., Laflamme, B., Seto, D., Bastedo, D.P., Dillon, M.M., Almeida, R., Guttman, D.S., Desveaux, D., 2020. Immunodiversity of the Arabidopsis ZAR1 NLR is conveyed by receptor-like cytoplasmic kinase sensors. Front. Plant Sci. 11, 1290.
    Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E., Staskawicz Brian, J., 2020. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993.
    Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., Caranta, C., 2011. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6, e29595.
    McDonald, B.A., Linde, C., 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40, 349-379.
    Moore, J.W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., HuertaEspino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., et al., 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494-1498.
    Ngou, B.P.M., Ahn, H.-K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
    Ngou, B.P.M., Ding, P., Jones, J.D.G., 2022. Thirty years of resistance:zig-zag through the plant immune system. Plant Cell 34, 1447-1478.
    Ning, Y.S., Wang, G.-L., 2018. Breeding plant broad-spectrum resistance without yield penalties. Proc. Natl. Acad. Sci. U. S. A. 115, 2859-2861.
    Novak, F.J., Brunner, H., 1992. Plant breeding:induced mutation technology for crop improvement. IAEA Bull. 4, 25-33.
    OECD/FAO, 2019. OECD-FAO Agricultural Outlook 2019-2028. OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome.
    Okmen, B., Mathow, D., Hof, A., Lahrmann, U., Aßmann, D., Doehlemann, G., 2018. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19, 2603-2622.
    Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J.C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., et al., 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344-1350.
    Pavan, S., Jacobsen, E., Visser, R.G.F., Bai, Y., 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25, 1-12.
    Pottinger, S.E., Bak, A., Margets, A., Helm, M., Tang, L., Casteel, C., Innes, R.W., 2020. Optimizing the PBS1 decoy system to confer resistance to potyvirus infection in Arabidopsis and soybean. Mol. Plant Microbe Interact. 33, 932-944.
    Prigozhin, D.M., Krasileva, K.V., 2021. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell 33, 998-1015.
    Pruitt, R.N., Locci, F., Wanke, F., Zhang, L., Saile, S.C., Joe, A., Karelina, D., Hua, C., Frohlich, K., Wan, W.-L., et al., 2021. The EDS1-PAD4-ADR1 node mediates- Arabidopsis pattern-triggered immunity. Nature 598, 495-499.
    Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430-439.
    Schmitt-Keichinger, C., 2019. Manipulating cellular factors to combat viruses:a case study from the plant eukaryotic translation initiation factors eIF4. Front. Microbiol. 10, 17.
    Seong, K., Krasileva, K.V., 2021. Computational structural genomics unravels common folds and novel families in the secretome of fungal phytopathogen Magnaporthe oryzae. Mol. Plant Microbe Interact. 34, 1267-1280.
    Seong, K., Seo, E., Witek, K., Li, M., Staskawicz, B., 2020. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. 227, 1530e1543. Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., Innes, R.W., 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230-1233.
    Steinbrenner, A.D., Goritschnig, S., Staskawicz, B.J., 2015. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog. 11, e1004665.
    Steuernagel, B., Periyannan, S.K., Hernández-Pinzón, I., Witek, K., Rouse, M.N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., Jones, J.D.G., et al., 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652-655.
    Sun, X., Lapin, D., Feehan, J.M., Stolze, S.C., Kramer, K., Dongus, J.A., Rzemieniewski, J., Blanvillain-Baufumé, S., Harzen, A., Bautor, J., et al., 2021. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat. Commun. 12, 3335.
    Tang, J., Gu, X., Liu, J., He, Z., 2021. Roles of small RNAs in crop disease resistance. Stress Biol. 1, 1-15.
    Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al., 2021. Activation of TIR signalling boosts patterntriggered immunity. Nature 598, 500-503.
    Tibbs, C.L., Zhang, Z., Yu, J., 2021. Status and prospects of genome-wide association studies in plants. Plant Genome 14, e20077.
    United Nations, 2017. Department of economic and social affairs, population division. In:World Population Prospects:the 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.
    Van de Weyer, A.-L., Monteiro, F., Furzer, O.J., Nishimura, M.T., Cevik, V., Witek, K., Jones, J.D.G., Dangl, J.L., Weigel, D., Bemm, F., 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260-1272.
    van der Hoorn, R.A., Kamoun, S., 2008. From Guard to Decoy:a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
    Van Esse, H.P., Reuber, T.L., van der Does, D., 2020. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70-86.
    Vasudevan, K., Vera Cruz, C.M., Gruissem, W., Bhullar, N.K., 2014. Large scale germplasm screening for identification of novel rice blast resistance sources. Front. Plant Sci. 5, 505.
    Viana, V.E., Pegoraro, C., Busanello, C., Costa de Oliveira, A., 2019. Mutagenesis in rice:the basis for breeding a new super plant. Front. Plant Sci. 10, 1326.
    Vikas, V., Kumar, S., Archak, S., Tyagi, R., Kumar, J., Jacob, S., Sivasamy, M., Jayaprakash, P., Saharan, M., Basandrai, A., 2020. Screening of 19,460 genotypes of wheat species for resistance to powdery mildew and identification of potential candidates using focused identification of germplasm strategy (FIGS). Crop Sci. 60, 2857-2866.
    Von Arnim, A.G., Jia, Q., Vaughn, J.N., 2014. Regulation of plant translation by upstream open reading frames. Plant Sci. 214, 1-12.
    Wan, L., Essuman, K., Anderson, R.G., Sasaki, Y., Monteiro, F., Chung, E.-H., Osborne Nishimura, E., DiAntonio, A., Milbrandt, J., Dangl, J.L., et al., 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799-803.
    Wang, J., Chai, J., 2020. Structural insights into the plant immune receptors PRRs and NLRs. Plant Physiol. 182, 1566-1581.
    Wang, Q., Han, C., Ferreira, A.O., Yu, X., Ye, W., Tripathy, S., Kale, S.D., Gu, B., Sheng, Y., Sui, Y., et al., 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23, 2064-2086.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.-L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.F., Chabannes, M., et al., 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
    Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., 2018a. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026-1028.
    Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., et al., 2018b. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9, 1-12.
    Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.- M., Chai, J., 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
    Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., Lyu, Z., Chen, L., Xu, S., Guo, J., et al., 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435.
    Wang, C., Chen, S., Feng, A., Su, J., Wang, W., Feng, J., Chen, B., Zhang, M., Yang, J., Zeng, L., 2021a. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonas oryzae pv. oryzae. Rice 14, 1-16.
    Wang, H., Li, Y., Chern, M., Zhu, Y., Zhang, L.-L., Lu, J.-H., Li, X.-P., Dang, W.-Q., Ma, X.-C., Yang, Z.-R., et al., 2021b. Suppression of rice miR168 improves yield, flowering time and immunity. Nat. Plants 7, 129-136.
    Wang, Y., Pruitt, R.N., Nürnberger, T., Wang, Y., 2022. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 1-16.
    Witek, K., Jupe, F., Witek, A.I., Baker, D., Clark, M.D., Jones, J.D., 2016. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34, 656-660.
    Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., et al., 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206, 1463-1475.
    Wu, Z., Tian, L., Liu, X., Zhang, Y., Li, X., 2021. TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiol. 187, 681-686.
    Xin, X.-F., Nomura, K., Aung, K., Velásquez, A.C., Yao, J., Boutrot, F., Chang, J.H.,Zipfel, C., He, S.Y., 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524-529.
    Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., Dong, X., 2017. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494.
    Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., 2019. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant 12, 1434-1446.
    Yang, Y., Kim, N.H., Cevik, V., Jacob, P., Wan, L., Furzer, O.J., Dangl, J.L., 2022. Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional regulatory modes. bioRxiv. https://doi.org/10.1101/2022.05.10.491418.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.-M., He, S.Y., Xin, X.-F., 2021a. Pattern-recognition receptors are required for NLRmediated plant immunity. Nature 592, 105-109.
    Yuan, M., Ngou, B.P.M., Ding, P., Xin, X.-F., 2021b. PTI-ETI crosstalk:an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030.
    Zhai, K., Deng, Y., Liang, D., Tang, J., Liu, J., Yan, B., Yin, X., Lin, H., Chen, F., Yang, D., et al., 2019. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Mol. Cell 74, 996-1009.
    Zhai, K., Liang, D., Li, H., Jiao, F., Yan, B., Liu, J., Lei, Z., Huang, L., Gong, X., Wang, X., et al., 2022. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601, 245-251.
    Zhang, J., Yin, Z., White, F., 2015. TAL effectors and the executor R genes. Front. Plant Sci. 6, 641.
    Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., Tang, D., 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714-724.
    Zhao, B., Lin, X., Poland, J., Trick, H., Leach, J., Hulbert, S., 2005. A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. U. S. A. 102, 15383-15388.
    Zhao, Y., Shi, Y., Jiang, G., Wu, Y., Ma, M., Zhang, X., Liang, X., Zhou, J.-M., 2022. Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. New Phytol. 234, 607-617.
    Zhou, J.-M., Chai, J., 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11, 179-185.
    Zhou, J.-M., Zhang, Y., 2020. Plant immunity:danger perception and signaling. Cell 181, 978-989.
    Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., et al., 2018. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl. Acad. Sci. U. S. A. 115, 3174-3179.
    Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., et al., 2000. Genetic diversity and disease control in rice. Nature 406, 718-722.
    Zhu, S., Li, Y., Vossen, J.H., Visser, R.G., Jacobsen, E., 2012. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 21, 89-99.
    Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., Felix, G., 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (814) PDF downloads (89) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return