Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., Peleg, Z., 2014. Plant domestication versus crop evolution:a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351-360.
|
Ai, G., Liu, J., Fu, X., Li, T., Zhu, H., Zhai, Y., Xia, C., Pan, W., Li, J., Jing, M., et al., 2022. Making use of plant uORFs to control transgene translation in response to pathogen attack. BioDes. Res. 2022, 9820540.
|
Armstrong, M.R., Vossen, J., Lim, T.Y., Hutten, R.C.B., Xu, J., Strachan, S.M., Harrower, B., Champouret, N., Gilroy, E.M., Hein, I., 2019. Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol. J. 17, 540-549.
|
Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., et al., 2019. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139-143.
|
Bai, Y., Pavan, S., Zheng, Z., Zappel, N.F., Reinstädler, A., Lotti, C., De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R., et al., 2008. Naturally occurring broadspectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol. Plant Microbe Interact. 21, 30-39.
|
Barragan, A.C., Weigel, D., 2021. Plant NLR diversity:the known unknowns of panNLRomes. Plant Cell 33, 814-831.
|
Bart, R., Cohn, M., Kassen, A., McCallum Emily, J., Shybut, M., Petriello, A., Krasileva, K., Dahlbeck, D., Medina, C., Alicai, T., et al., 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. U. S. A. 109, E1972-E1979.
|
Bastet, A., Lederer, B., Giovinazzo, N., Arnoux, X., German-Retana, S., Reinbold, C., Brault, V., Garcia, D., Djennane, S., Gersch, S., et al., 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol. J. 16, 1569-1581.
|
Bhat, R.A., Miklis, M., Schmelzer, E., Schulze-Lefert, P., Panstruga, R., 2005. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. U. S. A. 102, 3135-3140.
|
Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541.
|
Blanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J., Koebnik, R., 2017. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15, 306-317.
|
Bohra, A., Kilian, B., Sivasankar, S., Caccamo, M., Mba, C., McCouch, S.R., Varshney, R.K., 2022. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412-431.
|
Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., et al., 1997. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell 88, 695-705.
|
Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., et al., 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1- CO39 by direct binding. Plant Cell 25, 1463-1481.
|
Cesari, S., Xi, Y., Declerck, N., Chalvon, V., Mammri, L., Pugnière, M., Henriquet, C., de Guillen, K., Chochois, V., Padilla, A., et al., 2022. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat. Commun. 13, 1524.
|
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., Gal-On, A., 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140-1153.
|
Chen, X., Liu, P., Mei, L., He, X., Chen, L., Liu, H., Shen, S., Ji, Z., Zheng, X., Zhang, Y., et al., 2021. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun. 2, 100143.
|
Cruz, C.M.V., Bai, J., Ona, I., Leung, H., Nelson, R.J., Mew, T.-W., Leach, J.E., 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc. Natl. Acad. Sci. U. S. A. 97, 13500-13505.
|
Damalas, C.A., Eleftherohorinos, I.G., 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402-1419.
|
De la Concepcion, J.C., Franceschetti, M., MacLean, D., Terauchi, R., Kamoun, S., Banfield, M.J., 2019. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8, e47713.
|
De la Concepcion, J.C., Maidment, J.H.R., Longya, A., Xiao, G., Franceschetti, M., Banfield, M.J., 2021a. The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface. PLoS Pathog. 17, e1009368.
|
De la Concepcion, J.C., Vega Benjumea, J., Bialas, A., Terauchi, R., Kamoun, S., Banfield, M.J., 2021b. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. eLife 10, e71662.
|
DeFalco, T.A., Zipfel, C., 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449-3467.
|
Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al., 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965.
|
Deng, Y., Ning, Y., Yang, D.L., Zhai, K., Wang, G.L., He, Z., 2020. Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Mol. Plant 13, 1402-1419.
|
DeYoung, B.J., Qi, D., Kim, S.-H., Burke, T.P., Innes, R.W., 2012. Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cell. Microbiol. 14, 1071-1084.
|
Dodds, P.N., Lawrence, G.J., Catanzariti, A.-M., Teh, T., Wang, C.I.A., Ayliffe, M.A., Kobe, B., Ellis, J.G., 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. U. S. A. 103, 8888-8893.
|
Dou, D., Zhou, J.-M., 2012. Phytopathogen effectors subverting host immunity:different foes, similar battleground. Cell Host Microbe 12, 484-495.
|
Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L.C.P., Zhou, J., Liebrand, T.W.H., Xie, C., Govers, F., Robatzek, S., et al., 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1, 15034.
|
Duxbury, Z., Wu, C.-H., Ding, P., 2021. A comparative overview of the intracellular guardians of plants and animals:NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184.
|
Ellis, J.G., Lagudah, E.S., Spielmeyer, W., Dodds, P.N., 2014. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5, 641.
|
Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., et al., 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034.
|
FAO, 2010. The second report on the state of the world's plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.
|
Frailie, T.B., Innes, R.W., 2021. Engineering healthy crops:molecular strategies for enhancing the plant immune system. Curr. Opin. Biotechnol. 70, 151e157.
|
Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., Dubcovsky, J., 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357-1360.
|
Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R., Yano, M., 2015. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 5, 7773.
|
Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al., 2021. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391e5404.
|
Garcia-Ruiz, H., Szurek, B., Van den Ackerveken, G., 2021. Stop helping pathogens:engineering plant susceptibility genes for durable resistance. Curr. Opin. Biotechnol. 70, 187e195.
|
Garrett, K.A., Mundt, C.C., 2000. Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology 90, 1307e1312.
|
Ghislain, M., Byarugaba, A.A., Magembe, E., Njoroge, A., Rivera, C., Román, M.L., Tovar, J.C., Gamboa, S., Forbes, G.A., Kreuze, J.F., et al., 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol. J. 17, 1119e1129.
|
Gong, Z., Qi, J., Hu, M., Bi, G., Zhou, J.-M., Han, G.-Z., 2022. The origin and evolution of a plant resistosome. Plant Cell 34, 1600-1620.
|
Grund, E., Tremousaygue, D., Deslandes, L., 2019. Plant NLRs with integrated domains:unity makes strength. Plant Physiol. 179, 1227-1235.
|
Gust, A.A., Pruitt, R., Nürnberger, T., 2017. Sensing danger:key to activating plant immunity. Trends Plant Sci. 22, 779-791.
|
Hayashi, N., Inoue, H., Kato, T., Funao, T., Shirota, M., Shimizu, T., Kanamori, H., Yamane, H., Hayano-Saito, Y., Matsumoto, T., et al., 2010. Durable panicle blastresistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 64, 498-510.
|
Horsefield, S., Burdett, H., Zhang, X., Manik, M.K., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J.-S., Rank, M.X., et al., 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793-799.
|
Hou, S., Liu, D., He, P., 2021. Phytocytokines function as immunological modulators of plant immunity. Stress Biol. 1, 8.
|
Huot, B., Yao, J., Montgomery, B.L., He, S.Y., 2014. Growth-defense tradeoffs in plants:a balancing act to optimize fitness. Mol. Plant 7, 1267-1287.
|
Inoue, H., Hayashi, N., Matsushita, A., Liu, X.Q., Nakayama, A., Sugano, S., Jiang, C.- J., Takatsuji, H., 2013. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 110, 9577-9582.
|
Jacob, P., Kim Nak, H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant "helper" immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425.
|
Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.
|
Johal, G.S., Briggs, S.P., 1992. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258, 985-987.
|
Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329.
|
Jones, J.D.G., Vance, R.E., Dangl, J.L., 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.
|
Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F., Dangl, J.L., 2019. Help wanted:helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82-94. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
|
Jupe, F., Witek, K., Verweij, W., Śliwka, J., Pritchard, L., Etherington, G.J., Maclean, D., Cock, P.J., Leggett, R.M., Bryan, G.J., Cardle, L., Hein, I., Jones, J.D.G., 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530-544.
|
Karasov, T.L., Chae, E., Herman, J.J., Bergelson, J., 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29, 666-680.
|
Kim, S.H., Qi, D., Ashfield, T., Helm, M., Innes, R.W., 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351, 684-687.
|
Kourelis, J., Marchal, C., Kamoun, S., 2021. NLR immune receptor-nanobody fusions confer plant disease resistance. bioRxiv. https://doi.org/10.1101/2021.10.24.465418.
|
Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B., 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360-1363.
|
Krattinger, S.G., Kang, J., Bräunlich, S., Boni, R., Chauhan, H., Selter, L.L., Robinson, M.D., Schmid, M.W., Wiederhold, E., Hensel, G., et al., 2019. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol. 223, 853-866.
|
Kusch, S., Panstruga, R., 2017. mlo-based resistance:an apparently universal "weapon" to defeat powdery mildew disease. Mol. Plant Microbe Interact. 30, 179-189.
|
Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., Van Esse, H.P., Smoker, M., Rallapalli, G., Thomma, B.P., Staskawicz, B., et al., 2010. Interfamily transfer of a plant pattern-recognition receptor confers broadspectrum bacterial resistance. Nat. Biotechnol. 28, 365-369.
|
Laflamme, B., Dillon, M.M., Martel, A., Almeida, R.N.D., Desveaux, D., Guttman, D.S., 2020. The pan-genome effector-triggered immunity landscape of a hostpathogen interaction. Science 367, 763-768.
|
Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., et al., 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074-1088.
|
Leach, J.E., Vera Cruz, C.M., Bai, J., Leung, H., 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39, 187-224.
|
Lee, S., Whitaker, V.M., Hutton, S.F., 2016. Mini review:potential applications of nonhost resistance for crop improvement. Front. Plant Sci. 7, 997.
|
Lewis, J.D., Wan, J., Ford, R., Gong, Y., Fung, P., Nahal, H., Wang, P.W., Desveaux, D., Guttman, D.S., 2012. Quantitative interactor screening with nextgeneration sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genom. 13, 8.
|
Li, Z., Xu, Y., 2022. Bulk segregation analysis in the NGS era:a review of its teenage years. Plant J. 109, 1355-1374.
|
Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., et al., 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114-126.
|
Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., Xu, C., 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160-1163.
|
Li, W., Chern, M., Yin, J., Wang, J., Chen, X., 2019. Recent advances in broadspectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 50, 114-120.
|
Li, W., Deng, Y., Ning, Y., He, Z., Wang, G.L., 2020. Exploiting broad-spectrum disease resistance in crops:from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575-603.
|
Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al., 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
|
Liang, X., Zhou, J.-M., 2018. Receptor-like cytoplasmic kinases:central players in plant receptor kinase-mediated signalling. Annu. Rev. Plant Biol. 69, 267-299.
|
Lin, X., Armstrong, M., Baker, K., Wouters, D., Visser, R.G.F., Wolters, P.J., Hein, I., Vleeshouwers, V.G., 2020. RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes. New Phytol. 227, 1264-1276.
|
Lin, H., Wang, M., Chen, Y., Nomura, K., Hui, S., Gui, J., Zhang, X., Wu, Y., Liu, J., Li, Q., et al., 2022. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Sci. Adv. 8, eabg8723.
|
Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al., 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5, 389-400.
|
Liu, X., Ao, K., Yao, J., Zhang, Y., Li, X., 2021a. Engineering plant disease resistance against biotrophic pathogens. Curr. Opin. Plant Biol. 60, 101987.
|
Liu, Y., Zhang, X., Yuan, G., Wang, D., Zheng, Y., Ma, M., Guo, L., Bhadauria, V., Peng, Y.L., Liu, J., 2021b. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc. Natl. Acad. Sci. U. S. A. 118, e2110751118.
|
Luo, M., Xie, L., Chakraborty, S., Wang, A., Matny, O., Jugovich, M., Kolmer, J.A., Richardson, T., Bhatt, D., Hoque, M., et al., 2021. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561-566.
|
Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., et al., 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eab-3069.
|
Martel, A., Laflamme, B., Seto, D., Bastedo, D.P., Dillon, M.M., Almeida, R., Guttman, D.S., Desveaux, D., 2020. Immunodiversity of the Arabidopsis ZAR1 NLR is conveyed by receptor-like cytoplasmic kinase sensors. Front. Plant Sci. 11, 1290.
|
Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E., Staskawicz Brian, J., 2020. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993.
|
Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., Caranta, C., 2011. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6, e29595.
|
McDonald, B.A., Linde, C., 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40, 349-379.
|
Moore, J.W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., HuertaEspino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., et al., 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494-1498.
|
Ngou, B.P.M., Ahn, H.-K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
|
Ngou, B.P.M., Ding, P., Jones, J.D.G., 2022. Thirty years of resistance:zig-zag through the plant immune system. Plant Cell 34, 1447-1478.
|
Ning, Y.S., Wang, G.-L., 2018. Breeding plant broad-spectrum resistance without yield penalties. Proc. Natl. Acad. Sci. U. S. A. 115, 2859-2861.
|
Novak, F.J., Brunner, H., 1992. Plant breeding:induced mutation technology for crop improvement. IAEA Bull. 4, 25-33.
|
OECD/FAO, 2019. OECD-FAO Agricultural Outlook 2019-2028. OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome.
|
Okmen, B., Mathow, D., Hof, A., Lahrmann, U., Aßmann, D., Doehlemann, G., 2018. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19, 2603-2622.
|
Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J.C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., et al., 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344-1350.
|
Pavan, S., Jacobsen, E., Visser, R.G.F., Bai, Y., 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25, 1-12.
|
Pottinger, S.E., Bak, A., Margets, A., Helm, M., Tang, L., Casteel, C., Innes, R.W., 2020. Optimizing the PBS1 decoy system to confer resistance to potyvirus infection in Arabidopsis and soybean. Mol. Plant Microbe Interact. 33, 932-944.
|
Prigozhin, D.M., Krasileva, K.V., 2021. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell 33, 998-1015.
|
Pruitt, R.N., Locci, F., Wanke, F., Zhang, L., Saile, S.C., Joe, A., Karelina, D., Hua, C., Frohlich, K., Wan, W.-L., et al., 2021. The EDS1-PAD4-ADR1 node mediates- Arabidopsis pattern-triggered immunity. Nature 598, 495-499.
|
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430-439.
|
Schmitt-Keichinger, C., 2019. Manipulating cellular factors to combat viruses:a case study from the plant eukaryotic translation initiation factors eIF4. Front. Microbiol. 10, 17.
|
Seong, K., Krasileva, K.V., 2021. Computational structural genomics unravels common folds and novel families in the secretome of fungal phytopathogen Magnaporthe oryzae. Mol. Plant Microbe Interact. 34, 1267-1280.
|
Seong, K., Seo, E., Witek, K., Li, M., Staskawicz, B., 2020. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. 227, 1530e1543. Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., Innes, R.W., 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230-1233.
|
Steinbrenner, A.D., Goritschnig, S., Staskawicz, B.J., 2015. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog. 11, e1004665.
|
Steuernagel, B., Periyannan, S.K., Hernández-Pinzón, I., Witek, K., Rouse, M.N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., Jones, J.D.G., et al., 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652-655.
|
Sun, X., Lapin, D., Feehan, J.M., Stolze, S.C., Kramer, K., Dongus, J.A., Rzemieniewski, J., Blanvillain-Baufumé, S., Harzen, A., Bautor, J., et al., 2021. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat. Commun. 12, 3335.
|
Tang, J., Gu, X., Liu, J., He, Z., 2021. Roles of small RNAs in crop disease resistance. Stress Biol. 1, 1-15.
|
Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al., 2021. Activation of TIR signalling boosts patterntriggered immunity. Nature 598, 500-503.
|
Tibbs, C.L., Zhang, Z., Yu, J., 2021. Status and prospects of genome-wide association studies in plants. Plant Genome 14, e20077.
|
United Nations, 2017. Department of economic and social affairs, population division. In:World Population Prospects:the 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.
|
Van de Weyer, A.-L., Monteiro, F., Furzer, O.J., Nishimura, M.T., Cevik, V., Witek, K., Jones, J.D.G., Dangl, J.L., Weigel, D., Bemm, F., 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260-1272.
|
van der Hoorn, R.A., Kamoun, S., 2008. From Guard to Decoy:a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
|
Van Esse, H.P., Reuber, T.L., van der Does, D., 2020. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70-86.
|
Vasudevan, K., Vera Cruz, C.M., Gruissem, W., Bhullar, N.K., 2014. Large scale germplasm screening for identification of novel rice blast resistance sources. Front. Plant Sci. 5, 505.
|
Viana, V.E., Pegoraro, C., Busanello, C., Costa de Oliveira, A., 2019. Mutagenesis in rice:the basis for breeding a new super plant. Front. Plant Sci. 10, 1326.
|
Vikas, V., Kumar, S., Archak, S., Tyagi, R., Kumar, J., Jacob, S., Sivasamy, M., Jayaprakash, P., Saharan, M., Basandrai, A., 2020. Screening of 19,460 genotypes of wheat species for resistance to powdery mildew and identification of potential candidates using focused identification of germplasm strategy (FIGS). Crop Sci. 60, 2857-2866.
|
Von Arnim, A.G., Jia, Q., Vaughn, J.N., 2014. Regulation of plant translation by upstream open reading frames. Plant Sci. 214, 1-12.
|
Wan, L., Essuman, K., Anderson, R.G., Sasaki, Y., Monteiro, F., Chung, E.-H., Osborne Nishimura, E., DiAntonio, A., Milbrandt, J., Dangl, J.L., et al., 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799-803.
|
Wang, J., Chai, J., 2020. Structural insights into the plant immune receptors PRRs and NLRs. Plant Physiol. 182, 1566-1581.
|
Wang, Q., Han, C., Ferreira, A.O., Yu, X., Ye, W., Tripathy, S., Kale, S.D., Gu, B., Sheng, Y., Sui, Y., et al., 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23, 2064-2086.
|
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.-L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
|
Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.F., Chabannes, M., et al., 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
|
Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., 2018a. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026-1028.
|
Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., et al., 2018b. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9, 1-12.
|
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.- M., Chai, J., 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
|
Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., Lyu, Z., Chen, L., Xu, S., Guo, J., et al., 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435.
|
Wang, C., Chen, S., Feng, A., Su, J., Wang, W., Feng, J., Chen, B., Zhang, M., Yang, J., Zeng, L., 2021a. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonas oryzae pv. oryzae. Rice 14, 1-16.
|
Wang, H., Li, Y., Chern, M., Zhu, Y., Zhang, L.-L., Lu, J.-H., Li, X.-P., Dang, W.-Q., Ma, X.-C., Yang, Z.-R., et al., 2021b. Suppression of rice miR168 improves yield, flowering time and immunity. Nat. Plants 7, 129-136.
|
Wang, Y., Pruitt, R.N., Nürnberger, T., Wang, Y., 2022. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 1-16.
|
Witek, K., Jupe, F., Witek, A.I., Baker, D., Clark, M.D., Jones, J.D., 2016. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34, 656-660.
|
Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., et al., 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206, 1463-1475.
|
Wu, Z., Tian, L., Liu, X., Zhang, Y., Li, X., 2021. TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiol. 187, 681-686.
|
Xin, X.-F., Nomura, K., Aung, K., Velásquez, A.C., Yao, J., Boutrot, F., Chang, J.H.,Zipfel, C., He, S.Y., 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524-529.
|
Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., Dong, X., 2017. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494.
|
Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., 2019. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant 12, 1434-1446.
|
Yang, Y., Kim, N.H., Cevik, V., Jacob, P., Wan, L., Furzer, O.J., Dangl, J.L., 2022. Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional regulatory modes. bioRxiv. https://doi.org/10.1101/2022.05.10.491418.
|
Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
|
Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.-M., He, S.Y., Xin, X.-F., 2021a. Pattern-recognition receptors are required for NLRmediated plant immunity. Nature 592, 105-109.
|
Yuan, M., Ngou, B.P.M., Ding, P., Xin, X.-F., 2021b. PTI-ETI crosstalk:an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030.
|
Zhai, K., Deng, Y., Liang, D., Tang, J., Liu, J., Yan, B., Yin, X., Lin, H., Chen, F., Yang, D., et al., 2019. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Mol. Cell 74, 996-1009.
|
Zhai, K., Liang, D., Li, H., Jiao, F., Yan, B., Liu, J., Lei, Z., Huang, L., Gong, X., Wang, X., et al., 2022. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601, 245-251.
|
Zhang, J., Yin, Z., White, F., 2015. TAL effectors and the executor R genes. Front. Plant Sci. 6, 641.
|
Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., Tang, D., 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714-724.
|
Zhao, B., Lin, X., Poland, J., Trick, H., Leach, J., Hulbert, S., 2005. A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. U. S. A. 102, 15383-15388.
|
Zhao, Y., Shi, Y., Jiang, G., Wu, Y., Ma, M., Zhang, X., Liang, X., Zhou, J.-M., 2022. Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. New Phytol. 234, 607-617.
|
Zhou, J.-M., Chai, J., 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11, 179-185.
|
Zhou, J.-M., Zhang, Y., 2020. Plant immunity:danger perception and signaling. Cell 181, 978-989.
|
Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., et al., 2018. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl. Acad. Sci. U. S. A. 115, 3174-3179.
|
Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., et al., 2000. Genetic diversity and disease control in rice. Nature 406, 718-722.
|
Zhu, S., Li, Y., Vossen, J.H., Visser, R.G., Jacobsen, E., 2012. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 21, 89-99.
|
Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., Felix, G., 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.
|