Anguela, X. M., Sharma, R., Doyon, Y., Miller, J. C., Li, H., Haurigot, V., Rohde, M. E., Wong, S. Y., Davidson, R. J., Zhou, S., et al., 2013. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122, 3283-3287
|
Barzel, A., Paulk, N. K., Shi, Y., Huang, Y., Chu, K., Zhang, F., Valdmanis, P. N., Spector, L. P., Porteus, M. H., Gaensler, K. M., et al., 2015. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360-364
|
Chen, H., Shi, M., Gilam, A., Zheng, Q., Zhang, Y., Afrikanova, I., Li, J., Gluzman, Z., Jiang, R., Kong, L. J., et al., 2019. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Scientific reports 9, 16838
|
Chen, J., An, B., Yu, B., Peng, X., Yuan, H., Yang, Q., Chen, X., Yu, T., Wang, L., Zhang, X., et al., 2021. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica 106, 829-837
|
Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K., et al., 2022. Inference of CRISPR Edits from Sanger Trace Data. CRISPR J. 5, 123–130
|
Conway, A., Mendel, M., Kim, K., McGovern, K., Boyko, A., Zhang, L., Miller, J. C., DeKelver, R. C., Paschon, D. E., Mui, B. L., et al., 2019. Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets. Mol. Ther. 27, 866-877
|
Cunningham, S. C., Spinoulas, A., Carpenter, K. H., Wilcken, B., Kuchel, P. W., Alexander, I. E., 2009. AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spfash mice. Mol Ther 17, 1340-1346
|
Davidoff, A. M., Nathwani, A. C., 2016. Genetic Targeting of the Albumin Locus to Treat Hemophilia. N. Engl. J. Med. 374, 1288-1290
|
De Caneva, A., Porro, F., Bortolussi, G., Sola, R., Lisjak, M., Barzel, A., Giacca, M., Kay, M. A., Vlahovicek, K., Zentilin, L., et al., 2019. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5
|
Doman, J. L., Raguram, A., Newby, G. A., Liu, D. R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620-628
|
Friedman, S. L., 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological reviews 88, 125-172
|
Gaj, T., Epstein, B. E., Schaffer, D. V., 2016. Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Mol. Ther. 24, 458-464
|
George, L. A., Sullivan, S. K., Giermasz, A., Rasko, J. E. J., Samelson-Jones, B. J., Ducore, J., Cuker, A., Sullivan, L. M., Majumdar, S., Teitel, J., et al., 2017. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. N. Engl. J. Med. 377, 2215-2227
|
Gobert, G., Cotillard, A., Fourmestraux, C., Pruvost, L., Miguet, J., Boyer, M., 2018. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J. Microbiol. Methods 148, 64-73
|
Guan, Y., Ma, Y., Li, Q., Sun, Z., Ma, L., Wu, L., Wang, L., Zeng, L., Shao, Y., Chen, Y., et al., 2016. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477-488
|
High, K. A., Roncarolo, M. G., 2019. Gene Therapy. N. Engl. J. Med. 381, 455-464
|
Kung, S. J. B., 1998. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 91, 784
|
Laoharawee, K., DeKelver, R. C., Podetz-Pedersen, K. M., Rohde, M., Sproul, S., Nguyen, H. O., Nguyen, T., St Martin, S. J., Ou, L., Tom, S., et al., 2018. Dose-Dependent Prevention of Metabolic and Neurologic Disease in Murine MPS II by ZFN-Mediated In Vivo Genome Editing. Mol. Ther. 26, 1127-1136
|
Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al., 2022. Gene editing and its applications in biomedicine. Science China. Life sciences 65, 660-700
|
Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S. Y., Bhagwat, A. S., Malani, N., Anguela, X. M., Sharma, R., Ivanciu, L., et al., 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217-221
|
Mao, Z., Bozzella, M., Seluanov, A., Gorbunova, V., 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell cycle 7, 2902-2906
|
Maresca, M., Lin, V. G., Guo, N., Yang, Y., 2013. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23, 539-546
|
Mashimo, T., Takizawa, A., Kobayashi, J., Kunihiro, Y., Yoshimi, K., Ishida, S., Tanabe, K., Yanagi, A., Tachibana, A., Hirose, J., et al., 2012. Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2, 685-694
|
Mendell, J. R., Al-Zaidy, S., Shell, R., Arnold, W. D., Rodino-Klapac, L. R., Prior, T. W., Lowes, L., Alfano, L., Berry, K., Church, K., et al., 2017. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 377, 1713-1722
|
Miller, D. G., Petek, L. M., Russell, D. W., 2004. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767-773
|
Mitchell, C., Willenbring, H., 2008. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167-1170
|
Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., et al., 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560
|
Nathwani, A. C., Tuddenham, E. G., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C., et al., 2011. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357-2365
|
Network, C. G. A. R., 2017. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 169, 1327-1341.e1323
|
Nielsen, L. N., Wiinberg, B., Hager, M., Holmberg, H. L., Hansen, J. J., Roepstorff, K., Tranholm, M., 2014. A novel F8 -/- rat as a translational model of human hemophilia A. Journal of thrombosis and haemostasis : JTH 12, 1274-1282
|
Ohmori, T., Nagao, Y., Mizukami, H., Sakata, A., Muramatsu, S. I., Ozawa, K., Tominaga, S. I., Hanazono, Y., Nishimura, S., Nureki, O., et al., 2017. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Scientific reports 7, 4159
|
Ou, L., Przybilla, M. J., Ahlat, O., Kim, S., Overn, P., Jarnes, J., O'Sullivan, M. G., Whitley, C. B., 2020. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol. Ther. 28, 1442-1454
|
Park, C. Y., Kim, D. H., Son, J. S., Sung, J. J., Lee, J., Bae, S., Kim, J. H., Kim, D. W., Kim, J. S., 2015. Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell stem cell 17, 213-220
|
Pavani, G., Amendola, M., 2020. Targeted Gene Delivery: Where to Land. Front Genome Ed 2, 609650
|
Perrin, G. Q., Herzog, R. W., Markusic, D. M., 2019. Update on clinical gene therapy for hemophilia. Blood 133, 407-414
|
Porro, F., Bortolussi, G., Barzel, A., De Caneva, A., Iaconcig, A., Vodret, S., Zentilin, L., Kay, M. A., Muro, A. F., 2017. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol. Med 9, 1346-1355
|
Rangarajan, S., Walsh, L., Lester, W., Perry, D., Madan, B., Laffan, M., Yu, H., Vettermann, C., Pierce, G. F., Wong, W. Y., et al., 2017. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A. N. Engl. J. Med. 377, 2519-2530
|
Rodgers, K., McVey, M., 2016. Error-Prone Repair of DNA Double-Strand Breaks. Journal of cellular physiology 231, 15-24
|
Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague, S., et al., 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849-860
|
Sabatino, D. E., Nichols, T. C., Merricks, E., Bellinger, D. A., Herzog, R. W., Monahan, P. E., 2012. Animal models of hemophilia. Prog. Mol. Biol. Transl. Sci. 105, 151-209
|
Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L. B., Calderaro, J., Rebouissou, S., Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., et al., 2015. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet 47, 505-511
|
Shao, Y., Guan, Y., Wang, L., Qiu, Z., Liu, M., Chen, Y., Wu, L., Li, Y., Ma, X., Liu, M., et al., 2014. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat. Protoc. 9, 2493-2512
|
Sharma, R., Anguela, X. M., Doyon, Y., Wechsler, T., DeKelver, R. C., Sproul, S., Paschon, D. E., Miller, J. C., Davidson, R. J., Shivak, D., et al., 2015. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777-1784
|
Sorensen, K. R., Roepstorff, K., Wiinberg, B., Hansen, A. K., Tranholm, M., Nielsen, L. N., Kjelgaard-Hansen, M., 2016. The F8(-/-) rat as a model of hemophilic arthropathy. Journal of thrombosis and haemostasis : JTH 14, 1216-1225
|
Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E. J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al., 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149
|
Suzuki, K., Yamamoto, M., Hernandez-Benitez, R., Li, Z., Wei, C., Soligalla, R. D., Aizawa, E., Hatanaka, F., Kurita, M., Reddy, P., et al., 2019. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res. 29, 804-819
|
Wang, D., Tai, P. W. L., Gao, G., 2019a. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358-378
|
Wang, L., Wang, H., Bell, P., McMenamin, D., Wilson, J. M., 2012. Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum. Gene ther. 23, 533-539
|
Wang, L., Yang, Y., Breton, C., Bell, P., Li, M., Zhang, J., Che, Y., Saveliev, A., He, Z., White, J., et al., 2020a. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci. Adv. 6, eaax5701
|
Wang, L., Yang, Y., Breton, C. A., White, J., Zhang, J., Che, Y., Saveliev, A., McMenamin, D., He, Z., Latshaw, C., et al., 2019b. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice. Blood 133, 2745-2752
|
Wang, Q., Zhong, X., Li, Q., Su, J., Liu, Y., Mo, L., Deng, H., Yang, Y., 2020b. CRISPR-Cas9-Mediated In Vivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. Mol. Ther. Methods Clin. Dev. 18, 520-531
|
Yang, L., Wang, L., Huo, Y., Chen, X., Yin, S., Hu, Y., Zhang, X., Zheng, R., Geng, H., Han, H., et al., 2020. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol. Ther. 28, 1673-1683
|
Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., et al., 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 34, 334-338
|
Yao, X., Wang, X., Hu, X., Liu, Z., Liu, J., Zhou, H., Shen, X., Wei, Y., Huang, Z., Ying, W., et al., 2017. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801-814
|
Yin, J., Liu, M., Liu, Y., Wu, J., Gan, T., Zhang, W., Li, Y., Zhou, Y., Hu, J., 2019. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov. 5, 18
|
Yin, S., Ma, L., Shao, T., Zhang, M., Guan, Y., Wang, L., Hu, Y., Chen, X., Han, H., Shen, N., et al., 2022. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Sci. China. Life sci. 65, 718-730
|
Zhang, J. P., Cheng, X. X., Zhao, M., Li, G. H., Xu, J., Zhang, F., Yin, M. D., Meng, F. Y., Dai, X. Y., Fu, Y. W., et al., 2019. Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biol. 20, 276
|
Zhang, X., Wang, L., Liu, M., Li, D., 2017. CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci. China. Life sci. 60, 468-475
|
Zhao, H., Li, Y., He, L., Pu, W., Yu, W., Li, Y., Wu, Y. T., Xu, C., Wei, Y., Ding, Q., et al., 2020. In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 141, 67-79
|
Zheng, R., Fang, X., Chen, X., Huang, Y., Xu, G., He, L., Li, Y., Niu, X., Yang, L., Wang, L., et al., 2020. Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin. Transl Med. 10, e261
|
Zheng, S., Geghman, K., Shenoy, S., Li, C., 2012. Retake the center stage--new development of rat genetics. J. Genet. Genomics 39, 261-268
|