5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 12
Dec.  2022
Turn off MathJax
Article Contents

Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration

doi: 10.1016/j.jgg.2022.06.001
Funds:

This work was partially supported by grants from National Key R&D Program of China (2019YFA0110802 and 2019YFA0802800), the National Natural Science Foundation of China (32025023, 31971366), and grants from the Shanghai Municipal Commission for Science and Technology (21CJ1402200, 20140900200), the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-05-E00054).

  • Received Date: 2022-04-08
  • Accepted Date: 2022-06-01
  • Rev Recd Date: 2022-05-29
  • Publish Date: 2022-06-09
  • CRISPR/Cas9-mediated site-specific insertion of exogenous genes holds potential for clinical applications. However, it is still infeasible because homologous recombination (HR) is inefficient, especially for non-dividing cells. To overcome the challenge, we report that a homology-independent targeted integration (HITI) strategy is used for permanent integration of high-specificity-activity Factor IX variant (F9 Padua, R338L) at the albumin (Alb) locus in a novel hemophilia B (HB) rat model. The knock-in efficiency reaches 3.66%, as determined by droplet digital PCR (ddPCR). The clotting time is reduced to a normal level four weeks after treatment, and the circulating factor IX (FIX) level is gradually increased up to 52% of the normal level over nine months even after partial hepatectomy, demonstrating the amelioration of hemophilia. Through primer-extension-mediated sequencing (PEM-seq), no significant off-target effect is detected. This study not only provides a novel model for HB but also identifies a promising therapeutic approach for rare inherited diseases.
  • loading
  • Anguela, X. M., Sharma, R., Doyon, Y., Miller, J. C., Li, H., Haurigot, V., Rohde, M. E., Wong, S. Y., Davidson, R. J., Zhou, S., et al., 2013. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122, 3283-3287
    Barzel, A., Paulk, N. K., Shi, Y., Huang, Y., Chu, K., Zhang, F., Valdmanis, P. N., Spector, L. P., Porteus, M. H., Gaensler, K. M., et al., 2015. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360-364
    Chen, H., Shi, M., Gilam, A., Zheng, Q., Zhang, Y., Afrikanova, I., Li, J., Gluzman, Z., Jiang, R., Kong, L. J., et al., 2019. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Scientific reports 9, 16838
    Chen, J., An, B., Yu, B., Peng, X., Yuan, H., Yang, Q., Chen, X., Yu, T., Wang, L., Zhang, X., et al., 2021. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica 106, 829-837
    Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K., et al., 2022. Inference of CRISPR Edits from Sanger Trace Data. CRISPR J. 5, 123–130
    Conway, A., Mendel, M., Kim, K., McGovern, K., Boyko, A., Zhang, L., Miller, J. C., DeKelver, R. C., Paschon, D. E., Mui, B. L., et al., 2019. Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets. Mol. Ther. 27, 866-877
    Cunningham, S. C., Spinoulas, A., Carpenter, K. H., Wilcken, B., Kuchel, P. W., Alexander, I. E., 2009. AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spfash mice. Mol Ther 17, 1340-1346
    Davidoff, A. M., Nathwani, A. C., 2016. Genetic Targeting of the Albumin Locus to Treat Hemophilia. N. Engl. J. Med. 374, 1288-1290
    De Caneva, A., Porro, F., Bortolussi, G., Sola, R., Lisjak, M., Barzel, A., Giacca, M., Kay, M. A., Vlahovicek, K., Zentilin, L., et al., 2019. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5
    Doman, J. L., Raguram, A., Newby, G. A., Liu, D. R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620-628
    Friedman, S. L., 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological reviews 88, 125-172
    Gaj, T., Epstein, B. E., Schaffer, D. V., 2016. Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Mol. Ther. 24, 458-464
    George, L. A., Sullivan, S. K., Giermasz, A., Rasko, J. E. J., Samelson-Jones, B. J., Ducore, J., Cuker, A., Sullivan, L. M., Majumdar, S., Teitel, J., et al., 2017. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. N. Engl. J. Med. 377, 2215-2227
    Gobert, G., Cotillard, A., Fourmestraux, C., Pruvost, L., Miguet, J., Boyer, M., 2018. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J. Microbiol. Methods 148, 64-73
    Guan, Y., Ma, Y., Li, Q., Sun, Z., Ma, L., Wu, L., Wang, L., Zeng, L., Shao, Y., Chen, Y., et al., 2016. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477-488
    High, K. A., Roncarolo, M. G., 2019. Gene Therapy. N. Engl. J. Med. 381, 455-464
    Kung, S. J. B., 1998. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 91, 784
    Laoharawee, K., DeKelver, R. C., Podetz-Pedersen, K. M., Rohde, M., Sproul, S., Nguyen, H. O., Nguyen, T., St Martin, S. J., Ou, L., Tom, S., et al., 2018. Dose-Dependent Prevention of Metabolic and Neurologic Disease in Murine MPS II by ZFN-Mediated In Vivo Genome Editing. Mol. Ther. 26, 1127-1136
    Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al., 2022. Gene editing and its applications in biomedicine. Science China. Life sciences 65, 660-700
    Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S. Y., Bhagwat, A. S., Malani, N., Anguela, X. M., Sharma, R., Ivanciu, L., et al., 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217-221
    Mao, Z., Bozzella, M., Seluanov, A., Gorbunova, V., 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell cycle 7, 2902-2906
    Maresca, M., Lin, V. G., Guo, N., Yang, Y., 2013. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23, 539-546
    Mashimo, T., Takizawa, A., Kobayashi, J., Kunihiro, Y., Yoshimi, K., Ishida, S., Tanabe, K., Yanagi, A., Tachibana, A., Hirose, J., et al., 2012. Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2, 685-694
    Mendell, J. R., Al-Zaidy, S., Shell, R., Arnold, W. D., Rodino-Klapac, L. R., Prior, T. W., Lowes, L., Alfano, L., Berry, K., Church, K., et al., 2017. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 377, 1713-1722
    Miller, D. G., Petek, L. M., Russell, D. W., 2004. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767-773
    Mitchell, C., Willenbring, H., 2008. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167-1170
    Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., et al., 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560
    Nathwani, A. C., Tuddenham, E. G., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C., et al., 2011. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357-2365
    Network, C. G. A. R., 2017. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 169, 1327-1341.e1323
    Nielsen, L. N., Wiinberg, B., Hager, M., Holmberg, H. L., Hansen, J. J., Roepstorff, K., Tranholm, M., 2014. A novel F8 -/- rat as a translational model of human hemophilia A. Journal of thrombosis and haemostasis : JTH 12, 1274-1282
    Ohmori, T., Nagao, Y., Mizukami, H., Sakata, A., Muramatsu, S. I., Ozawa, K., Tominaga, S. I., Hanazono, Y., Nishimura, S., Nureki, O., et al., 2017. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Scientific reports 7, 4159
    Ou, L., Przybilla, M. J., Ahlat, O., Kim, S., Overn, P., Jarnes, J., O'Sullivan, M. G., Whitley, C. B., 2020. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol. Ther. 28, 1442-1454
    Park, C. Y., Kim, D. H., Son, J. S., Sung, J. J., Lee, J., Bae, S., Kim, J. H., Kim, D. W., Kim, J. S., 2015. Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell stem cell 17, 213-220
    Pavani, G., Amendola, M., 2020. Targeted Gene Delivery: Where to Land. Front Genome Ed 2, 609650
    Perrin, G. Q., Herzog, R. W., Markusic, D. M., 2019. Update on clinical gene therapy for hemophilia. Blood 133, 407-414
    Porro, F., Bortolussi, G., Barzel, A., De Caneva, A., Iaconcig, A., Vodret, S., Zentilin, L., Kay, M. A., Muro, A. F., 2017. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol. Med 9, 1346-1355
    Rangarajan, S., Walsh, L., Lester, W., Perry, D., Madan, B., Laffan, M., Yu, H., Vettermann, C., Pierce, G. F., Wong, W. Y., et al., 2017. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A. N. Engl. J. Med. 377, 2519-2530
    Rodgers, K., McVey, M., 2016. Error-Prone Repair of DNA Double-Strand Breaks. Journal of cellular physiology 231, 15-24
    Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague, S., et al., 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849-860
    Sabatino, D. E., Nichols, T. C., Merricks, E., Bellinger, D. A., Herzog, R. W., Monahan, P. E., 2012. Animal models of hemophilia. Prog. Mol. Biol. Transl. Sci. 105, 151-209
    Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L. B., Calderaro, J., Rebouissou, S., Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., et al., 2015. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet 47, 505-511
    Shao, Y., Guan, Y., Wang, L., Qiu, Z., Liu, M., Chen, Y., Wu, L., Li, Y., Ma, X., Liu, M., et al., 2014. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat. Protoc. 9, 2493-2512
    Sharma, R., Anguela, X. M., Doyon, Y., Wechsler, T., DeKelver, R. C., Sproul, S., Paschon, D. E., Miller, J. C., Davidson, R. J., Shivak, D., et al., 2015. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777-1784
    Sorensen, K. R., Roepstorff, K., Wiinberg, B., Hansen, A. K., Tranholm, M., Nielsen, L. N., Kjelgaard-Hansen, M., 2016. The F8(-/-) rat as a model of hemophilic arthropathy. Journal of thrombosis and haemostasis : JTH 14, 1216-1225
    Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E. J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al., 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149
    Suzuki, K., Yamamoto, M., Hernandez-Benitez, R., Li, Z., Wei, C., Soligalla, R. D., Aizawa, E., Hatanaka, F., Kurita, M., Reddy, P., et al., 2019. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res. 29, 804-819
    Wang, D., Tai, P. W. L., Gao, G., 2019a. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358-378
    Wang, L., Wang, H., Bell, P., McMenamin, D., Wilson, J. M., 2012. Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum. Gene ther. 23, 533-539
    Wang, L., Yang, Y., Breton, C., Bell, P., Li, M., Zhang, J., Che, Y., Saveliev, A., He, Z., White, J., et al., 2020a. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci. Adv. 6, eaax5701
    Wang, L., Yang, Y., Breton, C. A., White, J., Zhang, J., Che, Y., Saveliev, A., McMenamin, D., He, Z., Latshaw, C., et al., 2019b. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice. Blood 133, 2745-2752
    Wang, Q., Zhong, X., Li, Q., Su, J., Liu, Y., Mo, L., Deng, H., Yang, Y., 2020b. CRISPR-Cas9-Mediated In Vivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. Mol. Ther. Methods Clin. Dev. 18, 520-531
    Yang, L., Wang, L., Huo, Y., Chen, X., Yin, S., Hu, Y., Zhang, X., Zheng, R., Geng, H., Han, H., et al., 2020. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol. Ther. 28, 1673-1683
    Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., et al., 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 34, 334-338
    Yao, X., Wang, X., Hu, X., Liu, Z., Liu, J., Zhou, H., Shen, X., Wei, Y., Huang, Z., Ying, W., et al., 2017. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801-814
    Yin, J., Liu, M., Liu, Y., Wu, J., Gan, T., Zhang, W., Li, Y., Zhou, Y., Hu, J., 2019. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov. 5, 18
    Yin, S., Ma, L., Shao, T., Zhang, M., Guan, Y., Wang, L., Hu, Y., Chen, X., Han, H., Shen, N., et al., 2022. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Sci. China. Life sci. 65, 718-730
    Zhang, J. P., Cheng, X. X., Zhao, M., Li, G. H., Xu, J., Zhang, F., Yin, M. D., Meng, F. Y., Dai, X. Y., Fu, Y. W., et al., 2019. Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biol. 20, 276
    Zhang, X., Wang, L., Liu, M., Li, D., 2017. CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci. China. Life sci. 60, 468-475
    Zhao, H., Li, Y., He, L., Pu, W., Yu, W., Li, Y., Wu, Y. T., Xu, C., Wei, Y., Ding, Q., et al., 2020. In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 141, 67-79
    Zheng, R., Fang, X., Chen, X., Huang, Y., Xu, G., He, L., Li, Y., Niu, X., Yang, L., Wang, L., et al., 2020. Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin. Transl Med. 10, e261
    Zheng, S., Geghman, K., Shenoy, S., Li, C., 2012. Retake the center stage--new development of rat genetics. J. Genet. Genomics 39, 261-268
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (554) PDF downloads (48) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return