5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 11
Nov.  2022
Turn off MathJax
Article Contents

Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice

doi: 10.1016/j.jgg.2022.05.006
Funds:

This work was supported by the National Key Research and Development Program of China (2018YFC1003703-1) and the National Natural Science Foundation of China (81871628, 82172288, and 81902027).

  • Received Date: 2021-11-22
  • Accepted Date: 2022-05-19
  • Rev Recd Date: 2022-05-18
  • Publish Date: 2022-05-30
  • Advanced maternal age is characterized by declines in the quantity and quality of oocytes in the ovaries, and the aging process is accompanied by changes in gut microbiota composition. However, little is known about the relationship between gut microbiota and ovarian aging. By using fecal microbiota transplantation (FMT) to transplant material from young (5-week-old) into aged (42-week-old) mice, we find that the composition of gut microbiota in FMT-treated mice presents a “younger-like phenotype” and an increase of commensal bacteria, such as Bifidobacterium and Ruminococcaceae. Moreover, the FMT-treated mice show increased anti-inflammatory cytokine IL-4 and decreased pro-inflammatory cytokine IFN-γ. Fertility tests for assessing ovarian function reveal that the first litter size of female FMT-treated mice is significantly higher than that of the non-FMT group. Morphology analysis demonstrates a dramatic decrease in follicle atresia and apoptosis as well as an increase in cellular proliferation in the ovaries of the FMT-treated mice. Our results also show that FMT improves the immune microenvironment in aged ovaries, with decreased macrophages and macrophage-derived multinucleated giant cells (MNGCs). These results suggest that FMT from young donors could be a good choice for delaying ovarian aging.
  • loading
  • Babayev, E., Duncan, F.E., 2022. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol. Reprod. 106, 351-365
    Banerjee, J., Sharma, R., Agarwal, A., Maitra, D., Diamond, M.P., Abu-Soud, H.M., 2012. Il-6 and mouse oocyte spindle. PLoS One 7, 4-8
    Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., et al., 2016. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480-1485
    Binyamin, D., Werbner, N., Nuriel-Ohayon, M., Uzan, A., Mor, H., Abbas, A., Ziv, O., Teperino, R., Gutman, R., Koren, O., 2020. The aging mouse microbiome has obesogenic characteristics. Genome Med. 12, 1-9
    Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857
    Chen, Y., Zhang, S., Zeng, B., Zhao, J., Yang, M., Zhang, M., Li, Yan, Ni, Q., Wu, D., Li, Y., 2020. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany. NY). 12, 4778-4793
    Dou, X., Sun, Y., Li, J., Zhang, J., Hao, D., Liu, W., Wu, R., Kong, F., Peng, X., Li, J., 2017. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 16, 825-836
    Ehninger, D., Neff, F., Xie, K., 2014. Longevity, aging and rapamycin. Cell. Mol. Life Sci. 71, 4325-4346
    Filip, M., Tzaneva, V., Dumitrascu, D.L., 2018. Fecal transplantation: digestive and extradigestive clinical applications. Clujul Med. 91, 259-265
    Grace Foley, K., Pritchard, M.T., Duncan, F.E., 2021. Macrophage-derived multinucleated giant cells: hallmarks of the aging ovary. Reproduction 161, V5-V9
    Garcia, D.N., Saccon, T.D., Pradiee, J., Rincon, J.A.A., Andrade, K.R.S., Rovani, M.T., Mondadori, R.G., Cruz, L.A.X., Barros, C.C., Masternak, M.M., et al., 2019. Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience 41, 395-408
    Gonzalez, A., Hall, M.N., 2017. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397-408
    Guo, M., Wang, H., Xu, S., Zhuang, Y., An, J., Su, C., Xia, Y., Chen, J., Xu, Z.Z., Liu, Q., et al., 2020. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes 11, 1758-1773
    Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al., 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395
    Kundu, P., Lee, H.U., Garcia-Perez, I., Tay, E.X.Y., Kim, H., Faylon, L.E., Martin, K.A., Purbojati, R., Drautz-Moses, D.I., Ghosh, S., et al., 2019. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci. Transl. Med. 11, 1-14
    Landry, D.A., Vaishnav, H.T., Vanderhyden, B.C., 2020. The significance of ovarian fibrosis. Oncotarget 11, 4366-4370
    Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814-821
    Leridon, H., 2004. Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment. Hum. Reprod. 19, 1548-1553
    Li, Y., Ning, L., Yin, Y., Wang, R., Zhang, Z., Hao, L., Wang, B., Zhao, X., Yang, X., Yin, L., et al., 2020. Age-related shifts in gut microbiota contribute to cognitive decline in aged rats. Aging (Albany. NY). 12, 7801-7817
    Liu, Y., Liu, H., Li, Z., Fan, H., Yan, X., Liu, X., Xuan, J., Feng, D., Wei, X., 2021. The release of peripheral immune inflammatory cytokines promote an inflammatory cascade in PCOS patients via altering the follicular microenvironment. Front. Immunol. 12, 1-14
    Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L., Mansell, A., Hutt, K., 2021. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci. Rep. 11, 1-15
    Machlin, J.H., Barishansky, S.J., Kelsh, J., Larmore, M.J., Johnson, B.W., Pritchard, M.T., Pavone, M.E., Duncan, F.E., 2021. Fibroinflammatory signatures increase with age in the human ovary and follicular fluid. Int. J. Mol. Sci. 22, 4902
    Maidana, D.E., Tsoka, P., Tian, B., Dib, B., Matsumoto, H., Kataoka, K., Lin, H., Miller, J.W., Vavvas, D.G., 2015. A novel imagej macro for automated cell death quantitation in the retina. Investig. Ophthalmol. Vis. Sci. 56, 6701-6708
    Miao, X., Leng, X., Zhang, Q., 2017. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int. J. Mol. Sci. 18, 336
    Minciullo, P.L., Catalano, A., Mandraffino, G., Casciaro, M., Crucitti, A., Maltese, G., Morabito, N., Lasco, A., Gangemi, S., Basile, G., 2016. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch. Immunol. Ther. Exp. (Warsz). 64, 111-126
    Noureldein, M.H., Eid, A.A., 2018. Gut microbiota and mTOR signaling: insight on a new pathophysiological interaction. Microb. Pathog. 118, 98-104
    O’Toole, P.W., Jeffery, I.B., 2015. Gut microbiota and aging. Science 350, 1214-1215
    Olofsson, L.E., 2022. The metabolic role and therapeutic potential of the microbiome. Endocr. Rev. 1-21
    Pedersen, T., 1970. Determination of follicle growth rate in the ovary of the immature mouse. J Reprod Fertil 21, 81–93
    Rea, I.M., Gibson, D.S., McGilligan, V., McNerlan, S.E., Denis Alexander, H., Ross, O.A., 2018. Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol. 9, 1-28
    Ruebel, M.L., Cotter, M., Sims, C.R., Moutos, D.M., Badger, T.M., Cleves, M.A., Shankar, K., Andres, A., 2017. Obesity modulates inflammation and lipidmetabolism oocyte gene expression: a single-cell transcriptome perspective. J. Clin. Endocrinol. Metab. 102, 2029-2038
    Russell, D.G., Huang, L., VanderVen, B.C., 2019. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 19, 291-304
    Selesniemi, K., Lee, H.J., Tilly, J.L., 2008. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7, 622-629
    Su, Y., Wang, T., Wu, N., Li, D., Fan, X., Xu, Z., Mishra, S.K., Yang, M., 2019. Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK. Aging (Albany. NY). 11, 4183-4197
    Sun, M.F., Shen, Y.Q., 2018. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Res. Rev. 45, 53-61
    Tamura, H., Kawamoto, M., Sato, S., Tamura, I., Maekawa, R., Taketani, T., Aasada, H., Takaki, E., Nakai, A., Reiter, R.J., et al., 2017. Long-term melatonin treatment delays ovarian aging. J. Pineal Res. 62, 1-14
    Teratani, T., Mikami, Y., Nakamoto, N., Suzuki, T., Harada, Y., Okabayashi, K., Hagihara, Y., Taniki, N., Kohno, K., Shibata, S., et al., 2020. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature 585, 591-596
    Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J.C., Verschoor, C.P., Loukov, D., Schenck, L.P., Jury, J., Foley, K.P., et al., 2017. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466
    Turner, E.C., Hughes, J., Wilson, H., Clay, M., Mylonas, K.J., Kipari, T., Duncan, W.C., Fraser, H.M., 2011. Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction 141, 821-831
    Turner, E.C., Hughes, J., Wilson, H., Clay, M., Mylonas, K.J., Kipari, T., Duncan, W.C., Fraser, H.M., 2011. Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction 141, 821-831. Uri-Belapolsky, S., Shaish, A., Eliyahu, E., Grossman, H., Levi, M., Chuderland, D., Ninio-Many, L., Hasky, N., Shashar, D., Almog, T., et al., 2014. Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc. Natl. Acad. Sci. U. S. A. 111, 12492-12497
    Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., Muller, F., 2003. Influence of TOR kinase on lifespan in C. elegans. Nature 426, 620
    Wang, J., Chen, W.D., Wang, Y.D., 2020. The relationship between gut microbiota and inflammatory diseases: the role of macrophages. Front. Microbiol. 11, 1-9
    Wang, S.Z., Yu, Y.J., Adeli, K., 2020. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms 8, 8-10
    Wu, R., Van der Hoek, K.H., Ryan, N.K., Norman, R.J., Robker, R.L., 2004. Macrophage contributions to ovarian function. Hum. Reprod. Update 10, 119-133
    Yang, Y., Li, L., Xu, C., Wang, Y., Wang, Z., Chen, M., Jiang, Z., Pan, J., Yang, C., Li, X., et al., 2021. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 70, 1495-1506
    Zheng, W., Nagaraju, G., Liu, Z., Liu, K., 2012. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol. Cell. Endocrinol. 356, 24-30
    Zhang, Z., Schlamp, F., Huang, L., Clark, H., Brayboy, L., 2020. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 159, 325-337
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (407) PDF downloads (23) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return