5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 8
Aug.  2022
Turn off MathJax
Article Contents

Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses

doi: 10.1016/j.jgg.2022.05.003
Funds:

We are grateful for the National Natural Science Foundation of China (32100553, 32171956, and 31770294), Natural Science Foundation of Jiangsu Province (BK20200555), the Fundamental Research Funds for the Central Universities, and a start-up fund for advanced talents from Nanjing Agricultural University (680-804016 to F.L.).

  • Received Date: 2022-01-23
  • Accepted Date: 2022-05-13
  • Rev Recd Date: 2022-05-12
  • Publish Date: 2022-05-25
  • Eukaryotic cells are confined by membranes that create hydrophobic barriers for substance and information exchange between the inside and outside of the cell. These barriers are formed by assembly of lipids and protein in aqueous environments. Lipids not only serve as building blocks for membrane construction, but also possess regulatory functions in cellular activities. These regulatory lipids are non-uniformly distributed in membrane systems; their temporal and spatial accumulation in specific membranes decodes environmental cues and changes cellular activity accordingly. Phosphoinositides (PIs) are phospholipids that exert regulatory effects. In recent years, research on PIs roles in regulating plant growth, development, and responses to environmental stress is increasing. Several reviews have been published on the composition of PIs, intermolecular transferring of PIs by lipid kinases (phosphatases) or PI-PLCs, subcellular localization, and specially their functions in plant developments. Herein, we review the crucial regulatory functions of PIs in plant stress responses, with a particular focus on PIs involved in membrane trafficking.
  • loading
  • Agorio, A., Giraudat, J., Bianchi, M.W., Marion, J., Espagne, C., Castaings, L., Lelievre, F., Curie, C., Thomine, S., Merlot, S., 2017. Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E3354-E3363
    Alvarez-Venegas, R., Sadder, M., Hlavacka, A., Baluska, F., Xia, Y., Lu, G., Firsov, A., Sarath, G., Moriyama, H., Dubrovsky, J.G., et al., 2006. The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc. Natl. Acad. Sci. U. S. A. 103, 6049-6054
    Aniento, F., Sanchez de Medina Hernandez, V., Dagdas, Y., Rojas-Pierce, M., Russinova, E., 2021. Molecular mechanisms of endomembrane trafficking in plants. Plant Cell. 34, 146-173
    Antignani, V., Klocko, A.L., Bak, G., Chandrasekaran, S.D., Dunivin, T., Nielsen, E., 2015. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 Phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell. 27, 243-261
    Arora, D., Abel, N.B., Liu, C., Van Damme, P., Yperman, K., Eeckhout, D., Vu, L.D., Wang, J., Tornkvist, A., Impens, F., et al., 2020. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell. 32, 3388-3407
    Barberon, M., Dubeaux, G., Kolb, C., Isono, E., Zelazny, E., Vert, G., 2014. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc. Natl. Acad. Sci. U. S. A. 111, 8293-8298
    Barbosa, I.C.R., Shikata, H., Zourelidou, M., Heilmann, M., Heilmann, I., Schwechheimer, C., 2016. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development. 143, 4687-4700
    Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., Yoshimoto, K., 2006. Autophagy in development and stress responses of plants. Autophagy. 2, 2-11
    Belda-Palazon, B., Rodriguez, L., Fernandez, M.A., Castillo, M.-C., Anderson, E.M., Gao, C., Gonzalez-Guzman, M., Peirats-Llobet, M., Zhao, Q., De Winne, N., et al., 2016. FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell. 28, 2291-2311
    Bloch, D., Pleskot, R., Pejchar, P., Potocky, M., Trpko¡ ova, P., Cwiklik, L., Vuka¡ inovic, N., Sternberg, H., Yalovsky, S., Zarsky, V., 2016. Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol. 172, 980-1002
    Block, M.A., Jouhet, J., 2015. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr. Opin. Cell Biol. 35, 21-29
    Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., Maurel, C., 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790-805
    Bridges, D., Ma, J.-T., Park, S., Inoki, K., Weisman, L.S., Saltiel, A.R., 2012. Phosphatidylinositol 3, 5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol. Biol. Cell. 23, 2955-2962
    Carpaneto, A., Boccaccio, A., Lagostena, L., Di Zanni, E., Scholz-Starke, J., 2017. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity. EMBO Rep. 18, 1100-1107
    Champeyroux, C., Stoof, C., Rodriguez-Villalon, A., 2020. Signaling phospholipids in plant development:small couriers determining cell fate. Curr. Opin. Plant Biol. 57, 61-71
    Choi, Y., Lee, Y., Jeon, B.W., Staiger, C.J., Lee, Y., 2008. Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. Plant, Cell Environ. 31, 366-377
    Colin, L.A., Jaillais, Y., 2020. Phospholipids across scales:lipid patterns and plant development. Curr. Opin. Plant Biol. 53, 1-9
    Couchoud, M., Der, C., Girodet, S., Vernoud, V., Prudent, M., Leborgne-Castel, N., 2019. Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. BMC Plant Biol. 19, 221
    Cui, Y., Shen, J., Gao, C., Zhuang, X., Wang, J., Jiang, L., 2016. Biogenesis of Plant Prevacuolar Multivesicular Bodies. Mol. Plant. 9, 774-786
    Delage, E., Ruelland, E., Guillas, I., Zachowski, A., Puyaubert, J., 2012. Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol. 53, 565-576
    Deng, X., Yuan, S., Cao, H., Lam, S.M., Shui, G., Hong, Y., Wang, X., 2019. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant, Cell Environ. 42, 536-548
    DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., Hama, H., 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126, 759-769
    Doumane, M., Caillaud, M.-C., Jaillais, Y., 2022. Experimental manipulation of phosphoinositide lipids:from cells to organisms. Trends Cell Biol. 32, 445-461
    Doumane, M., Lebecq, A., Colin, L., Fangain, A., Stevens, F.D., Bareille, J., Hamant, O., Belkhadir, Y., Munnik, T., Jaillais, Y., et al., 2021. Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. Nat. Plants. 7, 587-597
    Fratini, M., Krishnamoorthy, P., Stenzel, I., Riechmann, M., Matzner, M., Bacia, K., Heilmann, M., Heilmann, I., 2020. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. Plant Cell. 33, 642-670
    Fujimoto, M., Suda, Y., Vernhettes, S., Nakano, A., Ueda, T., 2014. Phosphatidylinositol 3-Kinase and 4-Kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. Plant Cell Physiol. 56, 287-298
    Funderburk, S.F., Wang, Q.J., Yue, Z., 2010. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355-362
    Gadeyne, A., Sanchez-Rodriguez, C., Vanneste, S., Di Rubbo, S., Zauber, H., Vanneste, K., Van Leene, J., De Winne, N., Eeckhout, D., Persiau, G., et al., 2014. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 156, 691-704
    Gaidarov, I., Chen, Q., Falck, J.R., Reddy, K.K., Keen, J.H., 1996. A functional phosphatidylinositol 3, 4, 5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 α subunit. Implications for the endocytic pathway. J. Biol. Chem. 271, 20922-20929
    Galvan-Ampudia, C.S., Julkowska, M.M., Darwish, E., Gandullo, J., Korver, R.A., Brunoud, G., Haring, M.A., Munnik, T., Vernoux, T., Testerink, C., 2013. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23, 2044-2050
    Gao, C., Zhuang, X., Cui, Y., Fu, X., He, Y., Zhao, Q., Zeng, Y., Shen, J., Luo, M., Jiang, L., 2015. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc. Natl. Acad. Sci. U. S. A. 112, 1886-1891
    Ge, C., Gao, C., Chen, Q., Jiang, L., Zhao, Y., 2019. ESCRT-dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. J Integr Plant Biol. 61, 968-973
    Geldner, N., Hyman, D.L., Wang, X., Schumacher, K., Chory, J., 2007. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev. 21, 1598-1602
    Gerth, K., Lin, F., Daamen, F., Menzel, W., Heinrich, F., Heilmann, M., 2017a. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. Plant J. 92, 862-878
    Gerth, K., Lin, F., Menzel, W., Krishnamoorthy, P., Stenzel, I., Heilmann, M., Heilmann, I., 2017b. Guilt by association:a phenotype-based view of the plant phosphoinositide network. Annu. Rev. Plant Biol. 68, 349-374
    Golani, Y., Kaye, Y., Gilhar, O., Ercetin, M., Gillaspy, G., Levine, A., 2013. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5PTase9) controls plant salt tolerance by regulating endocytosis. Mol. Plant. 6, 1781-1794
    Gujas, B., Cruz, T.M.D., Kastanaki, E., Vermeer, J.E.M., Munnik, T., Rodriguez-Villalon, A., 2017. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development. 144, 3578-3589
    Heilmann, I., 2016. Phosphoinositide signaling in plant development. Development. 143, 2044-2055
    Heucken, N., Ivanov, R., 2018. The retromer, sorting nexins and the plant endomembrane protein trafficking. J. Cell Sci. 131
    Hirano, T., Matsuzawa, T., Takegawa, K., Sato, M.H., 2010. Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis Plant Physiol. 155, 797-807
    Hirano, T., Munnik, T., Sato, M.H., 2015. Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve kinase mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiol. 169, 1961-1974
    Hirano, T., Sato, M.H., 2019. Diverse physiological functions of FAB1 and phosphatidylinositol 3,5-bisphosphate in plants. Front. Plant Sci. 10
    Hirano, T., Stecker, K., Munnik, T., Xu, H., Sato, M.H., 2017. Visualization of phosphatidylinositol 3,5-bisphosphate dynamics by a tandem ML1N-based fluorescent protein probe in Arabidopsis. Plant Cell Physiol. 58, 1185-1195
    Huang, A., Tang, Y., Shi, X., Jia, M., Zhu, J., Yan, X., Chen, H., Gu, Y., 2020. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat. Commun. 11, 3284
    Ischebeck, T., Stenzel, I., Heilmann, I., 2008. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell. 20, 3312-3330
    Ischebeck, T., Werner, S., Krishnamoorthy, P., Lerche, J., Meijon, M., Stenzel, I., Lofke, C., Wiessner, T., Im, Y.J., Perera, I.Y., et al., 2013. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell. 25, 4894-4911
    Ismail, A.M., Horie, T., 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68, 405-434
    Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C., Gaude, T., 2006. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature. 443, 106-109
    Jung, N., Haucke, V., 2007. Clathrin-mediated endocytosis at synapses. Traffic. 8, 1129-1136
    Kalachova, T., Janda, M., Sasek, V., Ortmannova, J., Novakova, P., Dobrev, I.P., Kravets, V., Guivarc'h, A., Moura, D., Burketova, L., et al., 2019. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann. Bot. 125, 775-784
    Kale, S.D., Gu, B., Capelluto, D.G.S., Dou, D., Feldman, E., Rumore, A., Arredondo, F.D., Hanlon, R., Fudal, I., Rouxel, T., et al., 2010. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell. 142, 284-295
    Karali, D., Oxley, D., Runions, J., Ktistakis, N., Farmaki, T., 2012. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLOS ONE. 7, e48241
    Kim, J.H., Lee, H.N., Huang, X., Jung, H., Otegui, M.S., Li, F., Chung, T., 2021. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. Plant Cell. 34, 351-373
    Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., Friml, J., 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U. S. A. 105, 17812-17817
    Konig, S., Ischebeck, T., Lerche, J., Stenzel, I., Heilmann, I., 2008. Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem. J. 415, 387-399
    Krishnamoorthy, P., Sanchez-Rodriguez, C., Heilmann, I., Persson, S., 2014. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann. Bot. 114, 1049-1057
    Kwon, S.I., Cho, H.J., Kim, S.R., Park, O.K., 2013. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol. 161, 1722-1736
    Lee, E., Vanneste, S., Perez-Sancho, J., Benitez-Fuente, F., Strelau, M., Macho, A.P., Botella, M.A., Friml, J., Rosado, A., 2019. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 116, 1420-1429
    Leshem, Y., Seri, L., Levine, A., 2007. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51, 185-197
    Levine, T.P., Patel, S., 2016. Signalling at membrane contact sites:two membranes come together to handle second messengers. Curr. Opin. Cell Biol. 39, 77-83
    Li, L., Wang, F., Yan, P., Jing, W., Zhang, C., Kudla, J., Zhang, W., 2017. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol. 214, 1172-1187
    Lin, C.-Y., Trinh, N.N., Fu, S.-F., Hsiung, Y.-C., Chia, L.-C., Lin, C.-W., Huang, H.-J., 2013. Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol. Biol. 81, 507-522
    Lin, D.-L., Yao, H.-Y., Jia, L.-H., Tan, J.-F., Xu, Z.-H., Zheng, W.-M., Xue, H.-W., 2020. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. New Phytol. 226, 142-155
    Lin, F., Krishnamoorthy, P., Schubert, V., Hause, G., Heilmann, M., Heilmann, I., 2019. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J. 38, e100303
    Liu, F., Hu, W., Li, F., Marshall, R.S., Zarza, X., Munnik, T., Vierstra, R.D., 2020. AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-kinase complex promote autophagy in Arabidopsis. Plant Cell. 32, 3939-3960
    Marshall, R.S., Vierstra, R.D., 2018. Autophagy:The master of bulk and selective recycling. Annu. Rev. Plant Biol. 69, 173-208
    Meijer, H.J.G., Divecha, N., van den Ende, H., Musgrave, A., Munnik, T., 1999. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta. 208, 294-298
    Michaud, M., Gros, V., Tardif, M., Brugiere, S., Ferro, M., Prinz, W.A., Toulmay, A., Mathur, J., Wozny, M., Falconet, D., 2016. AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr. Biol. 26, 627-639
    Munnik, T., Meijer, H.J.G., 2001. Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett. 498, 172-178
    Ndamukong, I., Jones, D.R., Lapko, H., Divecha, N., Avramova, Z., 2010. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLOS ONE. 5, e13396
    Noack, L.C., Bayle, V., Armengot, L., Rozier, F.d.r., Mamode-Cassim, A., Stevens, F.D., Caillaud, M.-C.c., Munnik, T., Mongrand, S.b., Pleskot, R., et al., 2021. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell. 34, 302-332
    Noack, L.C., Jaillais, Y., 2017. Precision targeting by phosphoinositides:how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22-33
    Noack, L.C., Jaillais, Y., 2020. Functions of anionic lipids in plants. Annu. Rev. Plant Biol. 71, 71-102
    Novakova, P., Hirsch, S., Feraru, E., Tejos, R., Wijk, R.v., Viaene, T., Heilmann, M., Lerche, J., Rycke, R.D., Feraru, M.I., et al., 2014. SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 2818-2823
    Okazaki, K., Miyagishima, S.-y., Wada, H., 2015. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis. Plant Cell. 27, 663-674
    Olivari, C., Albumi, C., Pugliarello, M.C., De Michelis, M.I., 2000. Phenylarsine oxide inhibits the fusicoccin-induced activation of plasma membrane H+-ATPase1. Plant Physiol. 122, 463-470
    Pecenkova, T., Hala, M., Kulich, I., Kocourkova, D., Drdova, E., Fendrych, M., Toupalova, H., Zarsky, V., 2011. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62, 2107-2116
    Peleg-Grossman, S., Volpin, H., Levine, A., 2007. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J. Exp. Bot. 58, 1637-1649
    Preuss, M.L., Schmitz, A.J., Thole, J.M., Bonner, H.K.S., Otegui, M.S., Nielsen, E., 2006. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172, 991-998
    Qin, L., Liu, L., Tu, J., Yang, G., Wang, S., Quilichini, T.D., Gao, P., Wang, H., Peng, G., Blancaflor, E.B., et al., 2021. The ARP2/3 complex, acting cooperatively with Class I formins, modulates penetration resistance in Arabidopsis against powdery mildew invasion. Plant Cell. 33, 3151-3175
    Qin, L., Zhou, Z., Li, Q., Zhai, C., Liu, L., Quilichini, T.D., Gao, P., Kessler, S.A., Jaillais, Y., Datla, R., et al., 2020. Specific recruitment of phosphoinositide species to the plant-pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell. 32, 1665-1688
    Rameh, L.E., Tolias, K.F., Duckworth, B.C., Cantley, L.C., 1997. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 390, 192-196
    Robatzek, S., Chinchilla, D., Boller, T., 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20, 537-542
    Rubilar-Hernandez, C., Osorio-Navarro, C., Cabello, F., Norambuena, L., 2019. PI4KIIIβ activity regulates lateral root formation driven by endocytic trafficking to the vacuole. Plant Physiol. 181, 112-126
    Saile, S.C., Ackermann, F.M., Sunil, S., Keicher, J., Bayless, A., Bonardi, V., Wan, L., Doumane, M., Stobbe, E., Jaillais, Y., et al., 2021. Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytol. 232, 2440-2456
    Sampaio, M., Neves, J., Cardoso, T., Pissarra, J., Pereira, S., Pereira, C., 2022. Coping with abiotic stress in plants-an endomembrane trafficking perspective. Plants. 11, 338
    Sasek, V., Janda, M., Delage, E., Puyaubert, J., Guivarc'h, A., Lopez Maseda, E., Dobrev, P.I., Caius, J., Boka, K., Valentova, O., et al., 2014. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 203, 805-816
    Shimada, T.L., Betsuyaku, S., Inada, N., Ebine, K., Fujimoto, M., Uemura, T., Takano, Y., Fukuda, H., Nakano, A., Ueda, T., 2019. Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol. 60, 1514-1524
    Simon, M.L.A., Platre, M.P., Assil, S., van Wijk, R., Chen, W.Y., Chory, J., Dreux, M., Munnik, T., Jaillais, Y., 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77, 322-337
    Simon, M.L.A., Platre, M.P., Marques-Bueno, M.M., Armengot, L., Stanislas, T., Bayle, V., Caillaud, M.-C., Jaillais, Y., 2016. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat. Plants. 2, 16089
    Song, T., Shi, Y., Shen, L., Cao, C., Shen, Y., Jing, W., Tian, Q., Lin, F., Li, W., Zhang, W., 2021. An endoplasmic reticulum localized cytochrome b5 regulates high-affinity K+ transport in response to salt stress in rice. Proc. Natl. Acad. Sci. U. S. A. 118, e2114347118
    Soereng, K., Neufeld, T.P., Simonsen, A., 2018. Chapter one-membrane trafficking in autophagy, in:Galluzzi, L. (Ed.) International Review of Cell and Molecular Biology. Academic Press, pp. 1-92
    Surpin, M., Zheng, H., Morita, M.T., Saito, C., Avila, E., Blakeslee, J.J., Bandyopadhyay, A., Kovaleva, V., Carter, D., Murphy, A., 2003. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell. 15, 2885-2899
    Synek, L., Pleskot, R., Sekeres, J., Serrano, N., Vukasinovic, N., Ortmannova, J., Klejchova, M., Pejchar, P., Batystova, K., Gutkowska, M., et al., 2021. Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc. Natl. Acad. Sci. U. S. A. 118, e2105287118
    Takemoto, K., Ebine, K., Askani, J.C., Kruger, F., Gonzalez, Z.A., Ito, E., Goh, T., Schumacher, K., Nakano, A., Ueda, T., 2018. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115, E2457-E2466
    Teh, O.-K., Hofius, D., 2014. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J. Exp. Bot. 65, 1297-1312
    Ueda, M., Tsutsumi, N., Fujimoto, M., 2016. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 474, 742-746
    Van den Bout, I., Divecha, N., 2009. PIP5K-driven PtdIns (4, 5) P 2 synthesis:regulation and cellular functions. J. Cell Sci. 122, 3837-3850
    Vermeer, J.E.M., van Leeuwen, W., Tobena-Santamaria, R., Laxalt, A.M., Jones, D.R., Divecha, N., Gadella Jr, T.W.J., Munnik, T., 2006. Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687-700
    Viotti, C., Bubeck, J., Stierhof, Y.-D., Krebs, M., Langhans, M., van den Berg, W., van Dongen, W., Richter, S., Geldner, N., Takano, J., et al., 2010. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell. 22, 1344-1357
    Wang, P., Shen, L., Guo, J., Jing, W., Qu, Y., Li, W., Bi, R., Xuan, W., Zhang, Q., Zhang, W., 2019. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. Plant Cell. 31, 250-271
    Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C.B., Williams, T.D., Wang, X., 2002. Profiling membrane lipids in plant stress responses:Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277, 31994-32002
    Xiao, Z., Yang, C., Liu, C., Yang, L., Yang, S., Zhou, J., Li, F., Jiang, L., Xiao, S., Gao, C., et al., 2020. SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. J Integr Plant Biol. 62, 1399-1417
    Xing, J., Zhang, L., Duan, Z., Lin, J., 2021. Coordination of phospholipid-based signaling and membrane trafficking in plant immunity. Trends Plant Sci. 26, 407-420
    Xu, C., Fan, J., Cornish, A.J., Benning, C., 2008. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. Plant Cell. 20, 2190-2204
    Yamamoto, W., Wada, S., Nagano, M., Aoshima, K., Siekhaus, D.E., Toshima, J.Y., Toshima, J., 2018. Distinct roles for plasma membrane PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis in yeast. J. Cell Sci. 131
    Yamaoka, Y., Yu, Y., Mizoi, J., Fujiki, Y., Saito, K., Nishijima, M., Lee, Y., Nishida, I., 2011. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. Plant J. 67, 648-661
    Yang, X., Wen, Z., Zhang, D., Li, Z., Li, D., Nagalakshmi, U., Dinesh-Kumar, S.P., Zhang, Y., 2021. Proximity labeling:an emerging tool for probing in planta molecular interactions. Plant Communications. 2, 100137
    Yang, Y., Han, X., Ma, L., Wu, Y., Liu, X., Fu, H., Liu, G., Lei, X., Guo, Y., 2021a. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Mol. Plant. 14, 2000-2014
    Yang, Y., Zhao, Y., Zheng, W., Zhao, Y., Zhao, S., Wang, Q., Bai, L., Zhang, T., Huang, S., Song, C., et al., 2021b. Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis. Plant Cell. 34, 477-494
    Yperman, K., Papageorgiou, A.C., Merceron, R., De Munck, S., Bloch, Y., Eeckhout, D., Jiang, Q., Tack, P., Grigoryan, R., Evangelidis, T., et al., 2021. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat. Commun. 12, 3050
    Zarsky, V., Kulich, I., Fendrych, M., Pecenkova, T., 2013. Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16, 726-733
    Zeng, Y., Li, B., Ji, C., Feng, L., Niu, F., Deng, C., Chen, S., Lin, Y., Cheung, K.C.P., Shen, J., et al., 2021. A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 118, e2021293118
    Zhang, L., Xing, J., Lin, J., 2019. At the intersection of exocytosis and endocytosis in plants. New Phytol. 224, 1479-1489
    Zhang, Q., Lin, F., Mao, T., Nie, J., Yan, M., Yuan, M., Zhang, W., 2012. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell. 24, 4555-4576
    Zhou, J., Lu, D., Xu, G., Finlayson, S.A., He, P., Shan, L., 2015. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. J. Exp. Bot. 66, 3353-3366
    Zhu, X., Li, S., Pan, S., Xin, X., Gu, Y., 2018. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc. Natl. Acad. Sci. U. S. A. 115, E3578-E3587
    Zhuang, X., Chung, K.P., Cui, Y., Lin, W., Gao, C., Kang, B.-H., Jiang, L., 2017. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E426-E435
    Zhuang, X., Wang, H., Lam, S.K., Gao, C., Wang, X., Cai, Y., Jiang, L., 2013. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell. 25, 4596-4615
    Zouhar, J., Rojo, E., Bassham, D.C., 2009. AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. Plant Physiol. 149, 1668-1678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (384) PDF downloads (38) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return