5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 5
May  2023
Turn off MathJax
Article Contents

Diverse interactions of five core type III effectors from Ralstonia solanacearum with plants

doi: 10.1016/j.jgg.2022.04.018
Funds:

This work was supported by the National Key R&D Program of China (2019YFD1002000), the Science and Technology Programs of the Shandong Tobacco (KN273), and Zunyi Tobacco (2021XM03).

  • Received Date: 2022-01-30
  • Accepted Date: 2022-04-30
  • Rev Recd Date: 2022-04-29
  • Publish Date: 2022-05-18
  • Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere. Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants. DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression, ROS burst, and callose deposition. RipAE, RipU, and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana. The derivatives RipC1ΔDXDX(T/V) and RipWΔDKXXQ but not RipAEK310R fail to suppress ROS burst. Moreover, RipAEK310R and RipWΔDKXXQ retain the cell death elicitation ability. RipAE and RipW are associated with salicylic acid and jasmonic acid pathways, respectively. RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants. The five core T3Es localize in diverse subcellular organelles of nucleus, plasma membrane, endoplasmic reticulum, and Golgi network. The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N. benthamiana. These results indicate that the core T3Es in R. solanacearum play diverse roles in plant-pathogen interactions.
  • loading
  • [1]
    Ailloud, F., Lowe, T., Cellier, G., Roche, D., Allen, C., Prior, P., 2015. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genom. 16, 270.
    [2]
    Alahuhta, M., Taylor, L.E., Brunecky R., Sammond, D.W., Michener, W., Adams, M.W.W., Himmel, M.E., Bomble, Y.J., Lunin, V., 2015. The catalytic mechanism and unique low pH optimum of Caldicellulosiruptor bescii family 3 pectate lyase. Acta. Crystallogr. D. Biol. Crystallogr. 71, 1946-1954.
    [3]
    Alfano, J.R., Bauer, D.W, Milos, T.M., Collmer, A., 1996. Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol. 19, 715-728.
    [4]
    Anderson, J.C., Wan, Y., Kim, Y-M., Pasa-Tolic, L., Metz, T.O., Peck, S.C., 2014. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Proc. Natl. Acad. Sci. U.S.A. 111, 6846-6851.
    [5]
    Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., Schulze-Lefert, P., 2002. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science. 295, 2073-2076.
    [6]
    Bao, Z., Wei, H-L., Ma, X., Swingle, B., 2020. Pseudomonas syringae AlgU downregulates flagellin gene expression, helping evade plant immunity. J. Bacteriol. 202, e00418- e00419.
    [7]
    Charkowski, A.O., Alfano, J.R., Preston, G., Yuan, J., He, S.Y., Collmer, A., 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180, 5211-5217.
    [8]
    Chen, H., Chen, J., Li, M., Chang, M., Xu, K., Shang, Z., Zhao, Y., Palmer, I., Zhang, Y., McGill, J., et al., 2017. A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host Microbe 22, 777-788.
    [9]
    Couto, D., Zipfel, C., 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537-552.
    [10]
    del Pozo, O., Pedley, K.F., Martin, G.B., 2004. MAPKKK alpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 23, 3072-3082.
    [11]
    Fang, X-D., Yan, T., Gao, Q., Cao, Q., Gao, D-M., Xu, W-Y., Zhang, Z-J., Ding, Z-H., Wang, X-B., 2019. A cytorhabdovirus phosphoprotein forms mobile inclusions trafficked on the actin/ER network for viral RNA synthesis. J. Exp. Bot. 70, 4049-4062.
    [12]
    Fegan, M., Prior, P., 2005. How complex is the "Ralstonia solanacearum species complex", in: Allen, C., Prioi, P., Hayward, A.C. (Eds.), Bact. Wilt Dis. Ralstonia Solanacearum Species Complex., Saint Paul, pp. 449-461.
    [13]
    Hayes, M.M., Macintyre, A.M., Allen, C., 2017. Complete genome sequences of the plant pathogens Ralstonia solanacearum type strain K60 and R. solanacearum race 3 biovar 2 strain UW551. Genome Announc. 5, e01088-17.
    [14]
    Hou, S., Yang, Y., Wu, D., Zhang, C., 2011. Plant immunity: evolutionary insights from PBS1, Pto and RIN4. Plant Signal. Behav. 6, 794-799.
    [15]
    Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantindis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114.
    [16]
    Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature. 444, 323-329.
    [17]
    Kvitko, B.H., Ramos, A.R., Morello, J.E., Oh, H-S., Collmer, A., 2007. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J. Bacteriol. 189, 8059-8072.
    [18]
    Landry, D., Gonzalez-Fuente, M., Deslandes, L., Peeters, N., 2020. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Mol. Plant Pathol. 21, 1377-1388.
    [19]
    Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., et al., 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell. 161, 1074-1088.
    [20]
    Li, J-G., Liu, H-X., Cao, J., Chen, L-F., Gu, C., Allen, C., Guo, J-H., 2010. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol. Plant Pathol. 11, 371-381.
    [21]
    Liang, X., Bao, Y., Zhang, M., Du, D., Rao, S., Li, Y., Wang, X., Xu, G., Zhou, Z., Shen, D., et al., 2021. A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytol. 232, 264-278.
    [22]
    Liu, L., Sonbol, F-M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S.Y., Dong, X., 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7, 13099.
    [23]
    Lowe-Power, T.M., Khokhani, D., Allen, C., 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 26, 929-942.
    [24]
    Macho, A.P., 2016. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol. 210, 51-57.
    [25]
    Ma, K-W., Ma, W., 2016. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev. 80, 1011-1027.
    [26]
    Meier-Kolthoff, J.P., Auch, A.F., Klenk, H-P., Goker, M., 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf. 14, 60.
    [27]
    Meier-Kolthoff, J.P., Carbasse, J.S., Peinado-Olarte, R.L., Goker, M., 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50, D801-D807.
    [28]
    Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, D., 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.
    [29]
    Morello J.E., Collmer, A., 2009. Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein. J. Bacteriol. 191, 3120-3131.
    [30]
    Mukaihara, T., Hatanaka, T., Nakano, M., Oda, K., 2016. Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio. 7, e00359-16.
    [31]
    Mukaihara T., Tamura N., Iwabuchi M., 2010. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol. Plant Microbe Interact. 23, 251-262.
    [32]
    Munkvold, K.R., Martin, M.E., Bronstein, P.A., Collmer, A., 2008. A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. Mol. Plant Microbe Interact. 21, 490-502.
    [33]
    Nakano, M., Ichinose, Y., Mukaihara, T., 2020. Ralstonia solanacearum type III effector RipAC targets SGT1 to suppress effector-triggered immunity. Plant Cell Physiol. 61, 2067-2076.
    [34]
    Nakano, M., Mukaihara, T., 2019. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. Mol. Plant Pathol. 20, 1237-1251.
    [35]
    Nelson, B.K., Cai, X., Nebenfuhr, A., 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.
    [36]
    Ngou, B.P.M., Ahn, H-K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 592, 110-115.
    [37]
    Nguyen, L-T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    [38]
    Peeters, N., Carrere, S., Anisimova, M., Plener, L., Cazale, A-C., Genin, S., 2013a. Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom. 14, 859.
    [39]
    Peeters, N., Guidot, A., Vailleau, F., Valls, M., 2013b. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14, 651-662.
    [40]
    Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., Van Wees, S.C.M., 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489-521.
    [41]
    Pitzschke A., Schikora Adam, Hirt H., 2009. MAPK cascade signalling networks in plant defence. Curr. Opin. Plant Biol. 12, 421-426.
    [42]
    Poueymiro, M., Cunnac, S., Barberis, P., Deslandes, L., Peeters, N., Cazale-Noel, A-C., Boucher, P., Genin, S., 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol. Plant Microbe Interact. 22, 538-550.
    [43]
    Qi, P., Huang, M., Hu, X., Zhang, Y., Wang, Y., Li, P., Chen, S., Zhang, D., Cao, S., Zhu, W., et al., 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell 34, 1666-1683.
    [44]
    Roberts, S.J., Eden-Green, S.J., Jones, P., Ambler, D.J., 1990. Pseudomonas syzygii, sp. nov., the cause of Sumatra disease of cloves. Syst. Appl. Microbiol. 13, 34-43.
    [45]
    Sabbagh, C.R.R., Carrere, S., Lonjon, F., Vailleau, F., Macho, A.P., Genin, S., Peeters, N., 2019. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ. 7, e7346.
    [46]
    Sang, Y., Yu, W., Zhuang, H., Wei, Y., Derevnina, L., Yu, G., Luo, J., Macho, A.P., 2020. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Commun. 1, 100025.
    [47]
    Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S.B., et al., 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell. 161, 1089-1100.
    [48]
    Schreiber, K.J., Lewis, J.D., 2021. Identification of a putative DNA-Binding protein in Arabidopsis that acts as a susceptibility hub and interacts with multiple Pseudomonas syringae effectors. Mol. Plant Microbe Interact. 34, 410-425.
    [49]
    Schultink, A., Qi, T., Lee, A., Steinbrenner, A.D., Staskawicz, B., 2017. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J. 92, 787-795.
    [50]
    Steidl, O.R., Truchon, A.N., Hayes, M.M., Allen, C., 2021. Complete genome resources for Ralstonia bacterial wilt strains UW763 (phylotype I); Rs5 and UW700 (phylotype II); and UW386, RUN2474, and RUN2279 (phylotype III). Mol. Plant Microbe Interact. 34, 1212-1215.
    [51]
    Sun, Y., Li, P., Shen, D., Wei, Q., He, J., Lu, Y., 2018. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis. Mol. Plant Pathol. 20, 533-546.
    [52]
    Tang, D., Wang, G., Zhou, J-M., 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29, 618-637.
    [53]
    Tasset, C., Bernoux, M., Jauneau, A., Pouzet, C., Briere, C., Kieffer-Jacquinod, S., Rivas, S., Marco, Y., Deslandes, L., 2010. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 6, e1001202.
    [54]
    Thomas, N.C., Hendrich, C.G., Gill, U.S., Allen, C., Hutton, S.F., Schultink, A., 2020. The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato. Front. Plant Sci. 11, 463.
    [55]
    Velasquez, A.C., Chakravarthy, S., Martin, G.B., 2009. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. JoVE 28, 1292.
    [56]
    Wang, K., Remigi, P., Anisimova, M., Lonjon, F., Kars, I., Kajava, A., Li, C-H., Cheng, C-P., Vailleau, F., Genin, S., et al., 2016. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum. Mol. Plant Pathol. 17, 553-564.
    [57]
    Wang, K., Uppalapati, S.R., Zhu, X., Dinesh-Kumar, S.P., Mysore, K.S., 2010. SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions. Mol. Plant Pathol. 11, 597-611.
    [58]
    Wang, Y., Zhao, A., Morcillo, R.J.L., Yu, G., Xue, H., Rufian, J.S., Sang, Y., Macho, A.P., 2021. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease. Mol. Plant 14, 1281-1296.
    [59]
    Wang, W., Feng, B., Zhou, J-M., Tang, D., 2020. Plant immune signaling: advancing on two frontiers. J. Integr. Plant Biol. 62, 2-24.
    [60]
    Wang, Z., Li, X., Wang, X., Liu, N., Xu, B., Peng, Q., Guo, Z., Fan, B., Zhu, C., Chen, Z., 2019. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant Immunity. Plant Cell 31, 153-171.
    [61]
    Wei, Z-M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., Beer, S.V., 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257, 85-88.
    [62]
    Wei, H-L., Zhang, W., Collmer, A., 2018. Modular study of the type III effector repertoire in Pseudomonas syringae pv. tomato DC3000 reveals a matrix of effector interplay in pathogenesis. Cell Rep. 23, 1630-1638.
    [63]
    Wei, H-L., Chakravarthy, S., Mathieu, J., Helmann, T.C., Stodghill, P., Swingle, B., Martin, G.B., Collmer, A., 2015. Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe 17, 752-762.
    [64]
    Wiermer, M., Feys, B.J., Parker, J.E., 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383-389.
    [65]
    Yin, X., Shang, B., Dou, M., Liu, R., Chen, T., Xiang, G., Li, Y., Liu, G., Xu, Y., 2019. The nuclear-localized RxLR effector PvAvh74 from Plasmopara viticola induces cell death and immunity responses in Nicotiana benthamiana. Front. Microbiol. 10, 1531.
    [66]
    Yu, G., Xian, L., Xue, H., Yu, W., Rufian, J.S., Sang, Y., Morcillo, R.J.L., Wang, Y., Macho, A.P. 2020. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathog. 16, e1008933.
    [67]
    Yu, G., Xian, L., Zhuang, H., Macho, A.P., 2021. SGT1 is not required for plant LRR-RLK-mediated immunity. Mol. Plant Pathol. 22, 145-150.
    [68]
    Zhang, C., Gao, H., Sun, Y., Jiang, L., He, S., Song, B., Liu, S., Zhao, M., Wang, L., Liu, Y., et al., 2021. The BTB/POZ domain protein GmBTB/POZ promotes the ubiquitination and degradation of the soybean AP2/ERF-like transcription factor GmAP2 to regulate the defense response to Phytophthora sojae. J. Exp. Bot. 72, 7891-7908.
    [69]
    Zhang, X., Yang, Y., Zhao, M., Yang, L., Jiang, J., Walcott, R., Yang, S., Zhao, T., 2020. Acidovorax citrulli type III effector AopP suppresses plant immunity by targeting the Watermelon transcription factor WRKY6. Front. Plant Sci. 11, 579218.
    [70]
    Zheng, X., Li, X., Wang, B., Cheng, D., Li, Y., Li, W., Huang, M., Tan, X., Zhao, G., Song, B., et al., 2019. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. Mol. Plant Pathol. 20, 547-561.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (407) PDF downloads (36) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return