5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

Characterization of heavy-chain antibody gene repertoires in Bactrian camels

doi: 10.1016/j.jgg.2022.04.010
Funds:

This work was supported by the National Natural Science Foundation of China (32070570), the National Key Research and Development Project (2020YFE0203300) and the Special Fund for Commercialization of Scientific and Research Findings in Inner Mongolia Autonomous Region (2021CG0021). We thank Yann Sterckx for helpful comments to our manuscript.

  • Received Date: 2022-02-11
  • Accepted Date: 2022-04-19
  • Rev Recd Date: 2022-04-19
  • Publish Date: 2023-01-28
  • Camelids are the only mammals that can produce functional heavy-chain antibodies (HCAbs). Although HCAbs were discovered over 30 years ago, the antibody gene repertoire of Bactrian camels remains largely underexplored. To characterize the diversity of variable genes of HCAbs (VHHs), germline and rearranged VHH repertoires are constructed. Phylogenetics analysis shows that all camelid VHH genes are derived from a common ancestor and the nucleotide diversity of VHHs is similar across all camelid species. While species-specific hallmark sites are identified, the non-canonical cysteines specific to VHHs are distinct in Bactrian camels and dromedaries compared with alpacas. Though low divergence at the germline repertoire between wild and domestic Bactrian camels, higher expression of VHHs is observed in some wild Bactrian camels than that of domestic ones. This study not only adds our understanding of VHH repertoire diversity across camelids, but also provides useful resources for HCAb engineering.
  • loading
  • Achour, I., Cavelier, P., Tichit, M., Bouchier, C., Lafaye, P.,Rougeon, F., 2008. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol. 181, 2001-2009
    Brooks, C.L., Rossotti, M.A.,Henry, K.A., 2018. Immunological functions and evolutionary emergence of heavy-chain antibodies. Trends Immunol. 39, 956-960
    Conrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J.M., Kinne, J., Wyns, L.,Muyldermans, S., 2001. β-Lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob. Agents Chemother. 45, 2807-2812
    Conrath, K.E., Wernery, U., Muyldermans, S.,Nguyen, V.K., 2003. Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev. Comp. Immunol. 27, 87-103
    Daley, L.P., Gagliardo, L.F., Duffy, M.S., Smith, M.C.,Appleton, J.A., 2005. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin. Diagn. Lab. Immunol. 12, 380-386
    De Genst, E., Saerens, D., Muyldermans, S.,Conrath, K., 2006. Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187-198
    Deiss, T.C., Vadnais, M., Wang, F., Chen, P.L., Torkamani, A., Mwangi, W., Lefranc, M.P., Criscitiello, M.F.,Smider, V.V., 2019. Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell. Mol. Immunol. 16, 64-75
    Deschacht, N., De Groeve, K., Vincke, C., Raes, G., De Baetselier, P.,Muyldermans, S., 2010. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. 184, 5696-5704
    Georgiou, G., Ippolito, G.C., Beausang, J., Busse, C.E., Wardemann, H.,Quake, S.R., 2014. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158-168
    Giudicelli, V., Chaume, D.,Lefranc, M.P., 2005. IMGT/GENE-DB:A comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 33, 256-261
    Gupta, N.T., Vander Heiden, J.A., Uduman, M., Gadala-Maria, D., Yaari, G.,Kleinstein, S.H., 2015. Change-O:a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356-3358
    Haakenson, J.K., Deiss, T.C., Warner, G.F., Mwangi, W., Criscitiello, M.F.,Smider, V.V., 2019. A broad role for cysteines in bovine antibody diversity. ImmunoHorizons 3, 478-487
    Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N.,Hammers, R., 1993. Naturally occurring antibodies devoid of light chains. Nature 363, 446-448
    Harmsen, M.M., Ruuls, R.C., Nijman, I.J., Niewold, T.A., Frenken, L.G.J.,de Geus, B., 2000. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol. Immunol. 37, 579-590
    Henry, K.A.,MacKenzie, C.R., 2018. Antigen recognition by single-domain antibodies:structural latitudes and constraints. mAbs 10, 815-826
    Ingram, J.R., Schmidt, F.I.,Ploegh, H.L., 2018. Exploiting nanobodies' singular traits. Annu. Rev. Immunol. 36, 695-715
    Jovcevska, I.,Muyldermans, S., 2020. The therapeutic potential of nanobodies. BioDrugs 34, 11-26
    Kromann-Hansen, T., Oldenburg, E., Yung, K.W.Y., Ghassabeh, G.H., Muyldermans, S., Declerck, P.J., Huang, M., Andreasen, P.A.,Ngo, J.C.K., 2016. A camelid-derived antibody fragment targeting the active site of a serine protease balances between inhibitor and substrate behavior. J. Biol. Chem. 291, 15156-15168
    Lauwereys, M., Ghahroudi, M.A., Desmyter, A., Kinne, J., Holzer, W., De Genst, E., Wyns, L.,Muyldermans, S., 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17, 3512-3520
    Kaas, Q., Duprat, E., Lefranc, M.-p., Pommie, C., Bosc, N., Guiraudou, D., Jean, C., Ruiz, M., Rouard, M.,Foulquier, E., 2005. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev. Comp. Immunol. 29, 185-203
    Lefranc, M.-P.P., Pommie, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V.,Lefranc, G., 2003. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 27, 55-77
    Li, X., Duan, X., Yang, K., Zhang, W., Zhang, C., Fu, L., Ren, Z., Wang, C., Wu, J., Lu, R., et al., 2016. Comparative analysis of immune repertoires between Bactrian camel's conventional and heavy-chain antibodies. PLoS ONE 11, 1-15
    Maass, D.R., Sepulveda, J., Pernthaner, A.,Shoemaker, C.B., 2007. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Methods 324, 13-25
    Mendoza, M.N., Jian, M., King, M.T.,Brooks, C.L., 2020. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB. Protein Sci. 29, 1004-1017
    Ming, L., Wang, Z., Yi, L., Batmunkh, M., Liu, T., Siren, D., He, J., Juramt, N., Jambl, T., Li, Y., et al., 2020. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 20, 770-780
    Muyldermans, S., 2013. Nanobodies:natural single-domain antibodies. Annu. Rev. Biochem. 82, 775-797
    Muyldermans, S., 2021. Applications of nanobodies. Annu. Rev. Anim. Biosci. 9, 401-421
    Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J.A.R.G.,Hamers, R., 1994. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. Des. Sel. 7, 1129-1135
    Nei, M.,Li, W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76, 5269-5273
    Nguyen, V., Su, C., Muyldermans, S.,Van Der Loo, W., 2002. Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54, 39-47
    Nguyen, V.K., Desmyter, A.,Muyldermans, S., 2001. Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 79, 261-296
    Nguyen, V.K., Hamers, R., Wyns, L.,Muyldermans, S., 1999. Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies. Mol. Immunol. 36, 515-524
    Nguyen, V.K., Hamers, R., Wyns, L.,Muyldermans, S., 2000. Camel heavy-chain antibodies:Diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. 19, 921-930
    Nguyen, V.K., Muyldermans, S.,Hamers, R., 1998. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J. Mol. Biol. 275, 413-418
    Paradis, E.,Schliep, K., 2019. Ape 5.0:An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528
    Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G.F., Wohlkonig, A., Ruf, A., Muyldermans, S., Hol, W.G.J., Kobilka, B.K.,Steyaert, J., 2014. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674-693
    Prabakaran, P.,Chowdhury, P.S., 2020. Landscape of non-canonical cysteines in human VH repertoire revealed by immunogenetic analysis. Cell Rep. 31, 107831-107831
    Schroeder Jr, H.W., Hillson, J.L.,Perlmutter, R.M., 1990. Structure and evolution of mammalian VH families. Int. Immunol. 2, 41-50
    Su, C., Nguyen, V.K.,Nei, M., 2002. Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids. Mol. Biol. Evol. 19, 205-215
    Tillib, S.V., Vyatchanin, A.S.,Muyldermans, S., 2014. Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. Biochemistry (Moscow) 79, 1382-1390
    Vu, K.B., Ghahroudi, M.A., Wyns, L.,Muyldermans, S., 1997. Comparison of llama V(H) sequences from conventional and heavy chain antibodies. Mol. Immunol. 34, 1121-1131
    Woolven, B.P., Frenken, L.G.J., van der Logt, P.,Nicholls, P.J., 1999. The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50, 98-101
    Wu, T.T.,Kabat, E.A., 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211-250
    Xu, J.L.,Davis, M.M., 2000. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37-45
    Ye, J., Ma, N., Madden, T.L.,Ostell, J.M., 2013. IgBLAST:an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34-W40
    Yu, G., 2020. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96-e96
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (338) PDF downloads (29) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return