Ahn, H. K., Kang, Y. W., Lim, H. M., Hwang, I. and Pai, H. S., 2015. Physiological functions of the COPI complex in higher plants. Mol. Cell 38, 866-875
|
Almagro Armenteros, J. J., Tsirigos, K. D., Soenderby, C. K. Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H., 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420-423
|
Bairoch, A., Apweiler, R., Wu, C. H., et al., 2005. The universal protein resource, UniProt. Nucleic Acids Res. 33, D154-D159
|
Benz, R., 1994. Permeation of hydrophilic solutes through mitochondrial outer membranes:review on mitochondrial porins. Biochim. Biophys. Acta 1197, 167-196
|
Bisseling, T., Bos, R. C. V. D., Kammen, A. V., Ploeg, M. V. D., Duijn, P. V., and Houwers, A., 1977. Cytofluorometrical determination of the DNA contents of bacteroids and corresponding broth-cultured Rhizobium bacteria. J. Gen. Microbiol. 101, 79-84
|
Blum, T., Briesemeister, S., and Kohlbacher, O., 2009. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinf., 10, 274
|
Bolanos, L., Redondo-Nieto, M., Rivilla, R., Brewin, N. J., and Bonilla, I., 2004. Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules. Mol. Plant Microbe Interact. 17, 216-223
|
Bole, D. G., Dowin, R., Doriaux, M., and Jamieson, J. D., 1989. Immunocytochemical localization of BiP to the rough endoplasmic reticulum:evidence for protein sorting by selective retention. J. Histochem. Cytochem. 37,1817-1823
|
Brandizzi, F., 2018. Transport from the endoplasmic reticulum to the Golgi in plants:where are we now? Semin. Cell Dev. Biol. 80, 94-105
|
Brear, E. M., Bedon, F., Gavrin, A., Kryvoruchko, I. S., Torres-Jerez, I., Udvardi, M. K., Day, D. A., and Smith, P. M. C., 2020. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytol. 228, 667-681
|
Brear, E. M., Day, D. A., and Smith, P. M. C., 2013. Iron:an essential micronutrient for the legume-rhizobium symbiosis. Front. Plant Sci. 4, 359
|
Brewin, N. J., 2004. Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit. Rev. Plant Sci. 23, 293-316
|
Catalano, C. M., Lane, W. S., and Sherrier, D. J., 2004. Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25, 519-531
|
Cheon, C. I., Lee, N. G., Siddique, A. B., Bal, A. K. and Verma, D. P. S., 1993. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J. 12, 4125-4135
|
Clarke, V. C., Loughli, P. C., Gavrin, A., Chen, C., Brear, E. M., Day, D. A., and Smith, P. M., 2015. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol. Cell. Proteomics 14, 1301-1322
|
Coba de la Pena, T., Fedorova, E., Pueyo, J. J., and Lucas, M. M., 2018. The symbiosome:legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front. Plant Sci. 8, 2229
|
Cox, J., and Mann, M., 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372
|
Craddock, C., Lavagi, I. and Yang, Z., 2012. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 22, 492-501
|
Day, D. A., Price, G. D. and Udvardi, M. K., 1989. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis:peribacteroid units from soybean nodules. Physiol. Plantarum 16, 69-84
|
Dean, R. M., Rivers, R. L., Zeidel, M. L., and Roberts, D. M., 1999. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38, 347-353
|
Dwyer, M. A. and Hellinga, H. W., 2004. Periplasmic binding proteins:a versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 14, 495-504
|
El-Gebali, S. Mistry, J., Bateman, A., et al., 2018. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427-D432
|
Emerich, D. W. and Krishnan, H. B., 2014. Symbiosomes:temporary moonlighting organelles. Biol. Chem. J. 460, 1-11
|
Fankhauser, N. and Maser, P., 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846-1852
|
Ferguson, B. J. and Mathesius, U., 2014. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 40, 770-790
|
Foo, E., and Davies, N. W., 2011. Strigolactones promote nodulation in pea. Planta. 234, 1073-1081
|
Gabriely, G., Rachel K. and Jeffrey E. G., 2007. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol. Cell Biol. 27, 526-540
|
Gamas, P., Brault, M., Jardinaud, M. F., and Frugier, F., 2017. Cytokinins in symbiotic nodulation:when, where, what for? Trends Plant Sci. 22, 792-802
|
Gavrin, A., Chiasson, D., Ovchinnikova, E., Kaiser, B. N., Bisseling, T. and Fedorova, E. E., 2016. VAMP 721a and VAMP 721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol. 210, 1011-1021
|
Gavrin, A., Kaiser, B. N., Geiger, D., Tyerman, S. D., Wen, Z., Bisseling, T. and Fedorova, E. E., 2014. Adjustment of host cells for accommodation of symbiotic bacteria:vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. Plant Cell, 26, 3809-3822
|
Gavrin, A., Loughlin, P. C., Brear, E., Griffith, O. W., Bedon, F., Suter Grotemeyer, M., Escudero, V., Reguera, M., Qu, Y., Mohd-Noor, S. N., Chen, C., Osorio, M. B., Rentsch, D., Gonzalez-Guerrero, M., Day, D. A., and Smith, P. M. C. 2021. Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. Plant Physiol. 186, 581-598
|
Gomez-Navarro, N. and Miller, E. A., 2016. COP-coated vesicles. Curr. Biol. 26, R54-R57
|
Gonzalez, D., Richez, M., Bergonzi, C., Chabriere, E., and Elias, M., 2014. Crystal structure of the phosphate-binding protein, PBP-1 of an ABC-type phosphate transporter from Clostridium perfringens. Sci. Rep. 4, 6636
|
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D. S., 2011. Phytozome:a comparative platform for green plant genomics. Nucleic Acids Res. 40, 1178-1186
|
Grant, D., Nelson, R. T., Cannon, S. B., and Shoemaker, R. C., 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38, D843-D846
|
Greeff, C., Roux, M., Mundy, J., and Petersen, M., 2012. Receptor-like kinase complexes in plant innate immunity. Front. Plant Sci. 3, 209
|
Guan, X. and Fierke, C. A., 2011. Understanding protein palmitoylation:biological significance and enzymology. Sci. China Chem. 54, 1888-1897
|
Haag, A. F., Arnold M. F.F., Myka, K.K., Kerscher, B., Dall'Angelo, S., Zanda, M., Mergaert, P., and Ferguson, G. P., 2013. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiol. Rev. 37, 364-383
|
Hakoyama, T., Niimi, K., Yamamoto, T., et al., 2012. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol. 53, 225-236
|
Herger, A., Dunser, K., Kleine-Vehn, J., and Ringli, C., 2019. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr. Biol. 29, 851-858
|
Hwang, J. H., Ellingson, S.R., and Roberts, D.M., 2010. Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584, 4339-4343
|
Ivanov, S., Fedorova, E. E., Limpens, E., De Mita, S., Genre, A., Bonfante, P. and Bisseling, T., 2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. U.S.A. 109, 8316-8321
|
Jiang, G., Krishnan, A. H., Kim, Y. W., Wacek, T. J., and Krishnan, H. B., 2001. A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean, Glycine max[L.] Merr. J. Bacteriol. 183, 2595-2604
|
Kaiser, B. N., Moreau, S., Castelli, J., Thomson, R., Lambert, A., Bogliolo, S., Puppo, A., and Day, D. A., 2003. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J. 35, 295-304
|
Kalde, M., Elliott, L., Ravikumar, R., et al., 2019. Interactions between transport protein particle, TRAPP complexes and Rab GTPases in Arabidopsis. Plant J. 100, 279-297
|
Kall, L., Krogh, A., and Sonnhammer, E. L., 2004. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027-1036
|
Katinakis, P., Lankhorst, R. K., Louwerse, J., Van Kammen, A., and Van den Bos, R. C., 1988. Bacteroid-encoded proteins are secreted into the peribacteroid space by Rhizobium leguminosarum. Plant Mol. Biol. 11, 183-190
|
Ke, D., Fang, Q., Chen, C., Zhu, H., Chen, T., Chang, X., Yuan, S., Kang, H., Ma, L., Hong, Z. and Zhang, Z., 2012. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiol. 159, 131-143
|
Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., and Wang, D., 2015. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. U.S.A. 112, 15238-15243
|
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L., 2001. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J. Mol. Biol. 305, 567-580
|
Krusell, L., Krause, K., Ott, T., Desbrosses, G., Kramer, U., Sato, S., et al., 2005. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17, 1625-1636
|
Kuroda, A., Kunimoto, H., Morohoshi, T., Ikeda, T., Kato, J., Takiguchi, N., Miya, A., and Ohtake, H., 2000. Evaluation of phosphate removal from water by immobilized phosphate-binding protein PstS. J. Biosci. Bioeng. 90, 688-690
|
Ledermann, R., Bartsch, I., Remus-Emsermann, M. N., Vorholt, J. A., and Fischer, H. M., 2015. Stable fluorescent and enzymatic tagging of Bradyrhizobium diazoefficiens to analyze host-plant infection and colonization. Mol. Plant Microbe Interact. 28, 959-967
|
Lei, L., Chen, L., Shi, X., Li, Y., Wang, J., Chen, D., Xie, F., and Li, Y., 2014. A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 1642, 1045-1058
|
Li, C., Luo, X., Zhao, S., Siu, G. K., Liang, Y., Chan, H. C., Satoh, A., and Yu, S. S., 2017. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J. 36, 441-457
|
Liang, P., Stratil, T. F., Popp, C., Marin, M., Folgmann, J., Mysore, K. S., Wen, J., and Ott, T., 2018. Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc. Natl. Acad. Sci. U.S.A. 115, 5289-5294
|
Limpens, E., Ivanov, S., van Esse, W., Voets, G., Fedorova, E., and Bisseling, T., 2009. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell. 21, 2811-2828
|
Liu, J., Liu, M. X., Qiu, L. P., and Xie, F. 2020a. SPIKE1 activates the GTPase ROP6 to guide the polarized growth of infection threads in Lotus japonicus. Plant Cell 32(12):3774-3791
|
Liu, J., Novero, M., Charnikhova, T., Ferrandino, A., Shubert, A., Ruyter-Spira, C., Bonfante, P., Lovisolo, C., Bouwmeester, H. J., and Cardinale, F., 2013. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J. Exp. Bot. 64, 1967-1981
|
Liu, S., Liao, L. L., Nie, M. M., Peng, W. T., Zhang, M. S., Lei, J. N., Zhong, Y. J., Liao, H., and Chen, Z. C., 2020b. A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytol. 226, 1413-1428
|
Lodwig, E. M., Hosie, A. H. F., Bourdes, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J. A., and Poole, P. S., 2003. Amino-acid cycling drives nitrogen fixation in the legume-rhizobium symbiosis. Nature 422, 722
|
Maqbool, A., Horler, R. S. P., Muller, A., Wilkinson, A. J., Wilson, K. S., and Thomas, G. H., 2015. The substrate-binding protein in bacterial ABC transporters:dissecting roles in the evolution of substrate specificity. Biochem. Soc. Trans. 43, 1011-1017
|
Masalkar, P., Wallace, I. S., Hwang, J. H. and Roberts, D. M., 2010. Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. Biol. Chem. J. 285, 23880-23888
|
Maurer-Stroh, S. and Eisenhaber, F., 2005. Refinement and prediction of protein prenylation motifs. Genome Biol. 6, R55
|
Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F., 2002. N-terminal N-myristoylation of proteins:prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541-557
|
Mendoza-Suarez, M. A., Geddes, B. A., Sanchez-Canizares, C., Ramirez-Gonzalez, R. H., Kirchhelle, C., Jorrin, B., and Poole, P. S., 2020. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proc. Natl. Acad. Sci. U.S.A. 117, 9822-9831
|
Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., and Kondorosi, E., 2003. A novel family in Medicago truncatula consisting of more than 3000 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 132, 161-173
|
Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A. E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., and Kondorosi, E., 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. U.S.A. 103, 5230-5235
|
Mishra, N. K., Chang, J., and Zhao, P. X., 2014. Prediction of membrane transport proteins and their substrate specificities using primary sequence information. PLoS One 9, e100278
|
Miyawaki, K. N. and Yang, Z., 2014. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Front. Plant Sci. 5, 449
|
Moreau, S., Thomson, R. M., Kaiser, B. N., Trevaskis, B., Guerinot, M. L., Udvardi, M. K., Puppo, A., and Day, D.A., 2002. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J. Biol. Chem. 277, 4738-4746
|
Nguyen, T., Zelechowska, M., Foster, V., Bergmann, H. and Verma, D. P. S., 1985. Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc. Natl. Acad. Sci. U.S.A. 82, 5040-5044
|
Noor, S. N. M., Day, D. A., and Smith, P. M., 2015. The symbiosome membrane. In Biological Nitrogen Fixation, eds John Wiley & Sons
|
Oldroyd, G. E., Murray, J. D., Poole, P. S. and Downie, J. A., 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45,119-144
|
Palmieri, F., Pierri, C. L., De Grassi, A., Nunes-Nesi, A. and Fernie, A. R., 2011. Evolution, structure and function of mitochondrial carriers:a review with new insights. Plant J. 66, 161-181
|
Pan, H., and Wang, D., 2017. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Native Plants 3, 17048
|
Pan, H., Oztas, O., Zhang, X., Wu, X., Stonoha, C., Wang, E., Wang, B., and Wang, D., 2016. A symbiotic SNARE protein generated by alternative termination of transcription. Native Plants 2, 15197
|
Panter, S., Thomson, R., De Bruxelles, G., Laver, D., Trevaskis, B. and Udvardi, M., 2000. Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol. Plant Microbe Interact. 13, 325-333
|
Penmetsa, R. V., and Cook, D. R. A. 1997. Legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527-530
|
Perret, X., Staehelin, C., and Broughton, W. J., 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180-201
|
Pessi, G., Ahrens, C. H., Rehrauer, H., Lindemann, A., Hauser, F., Fischer, H.M., and Hennecke, H., 2007. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol. Plant Microbe Interact. 20, 1353-1363
|
Pierleoni, A., Martelli, P. L. and Casadio, R., 2008. PredGPI:a GPI-anchor predictor. BMC Bioinf. 9, 392
|
Pii, Y., Molesini, B., Masiero, S., and Pandolfini, T., 2012. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC Plant Biol. 12, 233
|
Pimpl, P., Movafeghi, A., Coughlan, S., Denecke, J., Hillmer, S., and Robinson, D. G., 2000. In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell. 12, 2219-2235
|
Prell, J., White, J. P., Bourdes, A., Bunnewell, S., Bongaerts, R. J., and Poole, P. S., 2009. Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc. Natl. Acad. Sci. U.S.A. 106, 12477-12482
|
Price G. D., Day, D. A. and Gresshoff, P. M., 1987. Rapid isolation of intact peribacteroid envelopes from soybean nodules and demonstration of selective permeability to metabolites. Physiol. Plantarum 130, 157-164
|
R Core Team., 2018. R:a language and environment for statistical computing. http://www.R-project.org/
|
Raffaele, S., Perraki, A., and Mongrand, S., 2013. The remorin C-terminal anchor was shaped by convergent evolution among membrane binding domains. Plant Signal. Behav. 8, e23207
|
Ren, B., Wang, X., Duan, J., and Ma, J., 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919-922
|
Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., and Yao, X., 2008. CSS-Palm 2.0:an updated software for palmitoylation sites prediction. Protein Eng. Des. Sel. 21, 639-644
|
Robertson, J. G., and Lyttleton, P., 1984. Division of peribacteroid membranes in root nodules of white clover. J. Cell Sci. 69, 147-157
|
Rosendahl, L., Glenn, A. R., and Dilworth, M. J., 1991. Organic and inorganic inputs into legume root nodule nitrogen fixation. In:Dilworth M J, Glenn A R, editors. Biology and Biochemistry of Nitrogen Fixation. New York, N.Y:Elsevier. 259-291
|
Roth, L. E. and Stacey, G., 1989. Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur. J. Cell Biol. 49, 24-32
|
Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., and Udvardi, M. K., 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15-41
|
Saalbach, G., Erik, P. and Wienkoop, S., 2002. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea, Pisum sativum symbiosomes. Proteomics 2, 325-337
|
Salminen, T. A., Kristina, B. and Johan, E., 2016. Lipid transfer proteins:classification, nomenclature, structure, and function. Planta 244, 971-997
|
Schwacke, R., Ponce-Soto, G. Y., Krause, K., Bolger, A. M., Arsova, B., Hallab, A., Gruden, K., Stitt, M., Bolger, M. E., and Usadel, B., 2019. MapMan4:a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879-892
|
Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M., 2011. Global quantification of mammalian gene expression control. Nature 473, 337-342
|
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504
|
Shiu, S. H, and Bleecker, A. B., 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98, 10763-10768
|
Stevens, T. J. and Arkin, I. T., 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39, 417-420
|
Streeter, J. G., 1980. Carbohydrates in soybean nodules:II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiol.66, 471-476
|
Strodtman, K. N., Stevenson, S. E., Waters, J. K., Mawhinney, T. P., Thelen, J. J., Polacco, J. C., Emerich, D. W. The bacteroid periplasm in soybean nodules is an interkingdom symbiotic space. Mol. Plant Microbe Interact. 30, 997-1008
|
Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M., 2017. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139, 3997-4006, 2012
|
Szklarczyk, D., Franceschini, A., Wyder, S., et al., 2014. STRING v10:protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 447-452
|
Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D., and Koonin, E. V., 2018. The COG database:new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22-28
|
Thul, P. J., Akesson, L., Wiking, M., et al., 2017. A subcellular map of the human proteome. Science 356, eaal3321
|
Udvardi, M. and Poole, P. S., 2013. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781-805
|
Udvardi, M. K., and Day, D. A., 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Mol. Biol. 48, 493-523
|
Van de Velde, W., Zehirov, G., Sztmari, A., et al., 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122-1126
|
Vincill, E. D., Szczyglowski, K., and Roberts, D. M., 2005. GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate. New Phytol. 137, 1435-1444
|
Wang, C., Zhu, M., Duan, L., Yu, H., Chang, X., Li, L., Kang, H., Feng, Y., Zhu, H., Hong, Z., and Zhang, Z., 2015. Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation. Plant Physiol. 167, 1497-1510
|
Wang, D., and Dong, X., 2011. A highway for war and peace:the secretory pathway in plant-microbe interactions. Mol. Plant 4, 581-587
|
Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., and Long, S., 2010. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126-1129
|
White, J., Prell, J., James, E. K., and Poole, P., 2007. Nutrient sharing between symbionts. Plant Physiol. 144, 604-614
|
Whitehead, L. F., and Day, D. A., 1997. The peribacteroid membrane. Physiol. Plantarum 100, 30-44
|
Whitney, J. A., Gomez, M., Sheff, D., Kreis, T. E. and Mellman, I., 1995. Cytoplasmic coat proteins involved in endosome function. Cell 83, 703-713
|
Wienkoop, S. and Saalbach, G., 2003. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiol. 131, 1080-1090
|
Yang, Z. and Fu, Y., 2007. ROP/Rac GTPase signaling. Curr. Opin. Plant Biol. 10, 490-494
|
Zurzolo, C. and Simons, K., 2016. Glycosylphosphatidylinositol-anchored proteins:membrane organization and transport. Biochim. Biophys. Acta 1858, 632-639
|