5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome

doi: 10.1016/j.jgg.2022.04.004
Funds:

We thank Dr. Yingchun Wang for critical reading and comments of the manuscript, and the Proteomics Facility at the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences for technical assistance. We thank the grant support to W.-C.Y. from the MOST (2016YFA0500502) and NSFC (31161130534), China. Y.L. from the Chinese Academy of Sciences (YSBR-011, ZDRW-ZS-2019-2, KFZD-SW-112-02-05).

  • Received Date: 2022-03-09
  • Accepted Date: 2022-04-13
  • Rev Recd Date: 2022-04-11
  • Publish Date: 2023-01-28
  • An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
  • loading
  • Ahn, H. K., Kang, Y. W., Lim, H. M., Hwang, I. and Pai, H. S., 2015. Physiological functions of the COPI complex in higher plants. Mol. Cell 38, 866-875
    Almagro Armenteros, J. J., Tsirigos, K. D., Soenderby, C. K. Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H., 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420-423
    Bairoch, A., Apweiler, R., Wu, C. H., et al., 2005. The universal protein resource, UniProt. Nucleic Acids Res. 33, D154-D159
    Benz, R., 1994. Permeation of hydrophilic solutes through mitochondrial outer membranes:review on mitochondrial porins. Biochim. Biophys. Acta 1197, 167-196
    Bisseling, T., Bos, R. C. V. D., Kammen, A. V., Ploeg, M. V. D., Duijn, P. V., and Houwers, A., 1977. Cytofluorometrical determination of the DNA contents of bacteroids and corresponding broth-cultured Rhizobium bacteria. J. Gen. Microbiol. 101, 79-84
    Blum, T., Briesemeister, S., and Kohlbacher, O., 2009. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinf., 10, 274
    Bolanos, L., Redondo-Nieto, M., Rivilla, R., Brewin, N. J., and Bonilla, I., 2004. Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules. Mol. Plant Microbe Interact. 17, 216-223
    Bole, D. G., Dowin, R., Doriaux, M., and Jamieson, J. D., 1989. Immunocytochemical localization of BiP to the rough endoplasmic reticulum:evidence for protein sorting by selective retention. J. Histochem. Cytochem. 37,1817-1823
    Brandizzi, F., 2018. Transport from the endoplasmic reticulum to the Golgi in plants:where are we now? Semin. Cell Dev. Biol. 80, 94-105
    Brear, E. M., Bedon, F., Gavrin, A., Kryvoruchko, I. S., Torres-Jerez, I., Udvardi, M. K., Day, D. A., and Smith, P. M. C., 2020. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytol. 228, 667-681
    Brear, E. M., Day, D. A., and Smith, P. M. C., 2013. Iron:an essential micronutrient for the legume-rhizobium symbiosis. Front. Plant Sci. 4, 359
    Brewin, N. J., 2004. Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit. Rev. Plant Sci. 23, 293-316
    Catalano, C. M., Lane, W. S., and Sherrier, D. J., 2004. Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25, 519-531
    Cheon, C. I., Lee, N. G., Siddique, A. B., Bal, A. K. and Verma, D. P. S., 1993. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J. 12, 4125-4135
    Clarke, V. C., Loughli, P. C., Gavrin, A., Chen, C., Brear, E. M., Day, D. A., and Smith, P. M., 2015. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol. Cell. Proteomics 14, 1301-1322
    Coba de la Pena, T., Fedorova, E., Pueyo, J. J., and Lucas, M. M., 2018. The symbiosome:legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front. Plant Sci. 8, 2229
    Cox, J., and Mann, M., 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372
    Craddock, C., Lavagi, I. and Yang, Z., 2012. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 22, 492-501
    Day, D. A., Price, G. D. and Udvardi, M. K., 1989. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis:peribacteroid units from soybean nodules. Physiol. Plantarum 16, 69-84
    Dean, R. M., Rivers, R. L., Zeidel, M. L., and Roberts, D. M., 1999. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38, 347-353
    Dwyer, M. A. and Hellinga, H. W., 2004. Periplasmic binding proteins:a versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 14, 495-504
    El-Gebali, S. Mistry, J., Bateman, A., et al., 2018. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427-D432
    Emerich, D. W. and Krishnan, H. B., 2014. Symbiosomes:temporary moonlighting organelles. Biol. Chem. J. 460, 1-11
    Fankhauser, N. and Maser, P., 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846-1852
    Ferguson, B. J. and Mathesius, U., 2014. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 40, 770-790
    Foo, E., and Davies, N. W., 2011. Strigolactones promote nodulation in pea. Planta. 234, 1073-1081
    Gabriely, G., Rachel K. and Jeffrey E. G., 2007. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol. Cell Biol. 27, 526-540
    Gamas, P., Brault, M., Jardinaud, M. F., and Frugier, F., 2017. Cytokinins in symbiotic nodulation:when, where, what for? Trends Plant Sci. 22, 792-802
    Gavrin, A., Chiasson, D., Ovchinnikova, E., Kaiser, B. N., Bisseling, T. and Fedorova, E. E., 2016. VAMP 721a and VAMP 721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol. 210, 1011-1021
    Gavrin, A., Kaiser, B. N., Geiger, D., Tyerman, S. D., Wen, Z., Bisseling, T. and Fedorova, E. E., 2014. Adjustment of host cells for accommodation of symbiotic bacteria:vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. Plant Cell, 26, 3809-3822
    Gavrin, A., Loughlin, P. C., Brear, E., Griffith, O. W., Bedon, F., Suter Grotemeyer, M., Escudero, V., Reguera, M., Qu, Y., Mohd-Noor, S. N., Chen, C., Osorio, M. B., Rentsch, D., Gonzalez-Guerrero, M., Day, D. A., and Smith, P. M. C. 2021. Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. Plant Physiol. 186, 581-598
    Gomez-Navarro, N. and Miller, E. A., 2016. COP-coated vesicles. Curr. Biol. 26, R54-R57
    Gonzalez, D., Richez, M., Bergonzi, C., Chabriere, E., and Elias, M., 2014. Crystal structure of the phosphate-binding protein, PBP-1 of an ABC-type phosphate transporter from Clostridium perfringens. Sci. Rep. 4, 6636
    Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D. S., 2011. Phytozome:a comparative platform for green plant genomics. Nucleic Acids Res. 40, 1178-1186
    Grant, D., Nelson, R. T., Cannon, S. B., and Shoemaker, R. C., 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38, D843-D846
    Greeff, C., Roux, M., Mundy, J., and Petersen, M., 2012. Receptor-like kinase complexes in plant innate immunity. Front. Plant Sci. 3, 209
    Guan, X. and Fierke, C. A., 2011. Understanding protein palmitoylation:biological significance and enzymology. Sci. China Chem. 54, 1888-1897
    Haag, A. F., Arnold M. F.F., Myka, K.K., Kerscher, B., Dall'Angelo, S., Zanda, M., Mergaert, P., and Ferguson, G. P., 2013. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiol. Rev. 37, 364-383
    Hakoyama, T., Niimi, K., Yamamoto, T., et al., 2012. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol. 53, 225-236
    Herger, A., Dunser, K., Kleine-Vehn, J., and Ringli, C., 2019. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr. Biol. 29, 851-858
    Hwang, J. H., Ellingson, S.R., and Roberts, D.M., 2010. Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584, 4339-4343
    Ivanov, S., Fedorova, E. E., Limpens, E., De Mita, S., Genre, A., Bonfante, P. and Bisseling, T., 2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. U.S.A. 109, 8316-8321
    Jiang, G., Krishnan, A. H., Kim, Y. W., Wacek, T. J., and Krishnan, H. B., 2001. A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean, Glycine max[L.] Merr. J. Bacteriol. 183, 2595-2604
    Kaiser, B. N., Moreau, S., Castelli, J., Thomson, R., Lambert, A., Bogliolo, S., Puppo, A., and Day, D. A., 2003. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J. 35, 295-304
    Kalde, M., Elliott, L., Ravikumar, R., et al., 2019. Interactions between transport protein particle, TRAPP complexes and Rab GTPases in Arabidopsis. Plant J. 100, 279-297
    Kall, L., Krogh, A., and Sonnhammer, E. L., 2004. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027-1036
    Katinakis, P., Lankhorst, R. K., Louwerse, J., Van Kammen, A., and Van den Bos, R. C., 1988. Bacteroid-encoded proteins are secreted into the peribacteroid space by Rhizobium leguminosarum. Plant Mol. Biol. 11, 183-190
    Ke, D., Fang, Q., Chen, C., Zhu, H., Chen, T., Chang, X., Yuan, S., Kang, H., Ma, L., Hong, Z. and Zhang, Z., 2012. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiol. 159, 131-143
    Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., and Wang, D., 2015. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. U.S.A. 112, 15238-15243
    Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L., 2001. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J. Mol. Biol. 305, 567-580
    Krusell, L., Krause, K., Ott, T., Desbrosses, G., Kramer, U., Sato, S., et al., 2005. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17, 1625-1636
    Kuroda, A., Kunimoto, H., Morohoshi, T., Ikeda, T., Kato, J., Takiguchi, N., Miya, A., and Ohtake, H., 2000. Evaluation of phosphate removal from water by immobilized phosphate-binding protein PstS. J. Biosci. Bioeng. 90, 688-690
    Ledermann, R., Bartsch, I., Remus-Emsermann, M. N., Vorholt, J. A., and Fischer, H. M., 2015. Stable fluorescent and enzymatic tagging of Bradyrhizobium diazoefficiens to analyze host-plant infection and colonization. Mol. Plant Microbe Interact. 28, 959-967
    Lei, L., Chen, L., Shi, X., Li, Y., Wang, J., Chen, D., Xie, F., and Li, Y., 2014. A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 1642, 1045-1058
    Li, C., Luo, X., Zhao, S., Siu, G. K., Liang, Y., Chan, H. C., Satoh, A., and Yu, S. S., 2017. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J. 36, 441-457
    Liang, P., Stratil, T. F., Popp, C., Marin, M., Folgmann, J., Mysore, K. S., Wen, J., and Ott, T., 2018. Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc. Natl. Acad. Sci. U.S.A. 115, 5289-5294
    Limpens, E., Ivanov, S., van Esse, W., Voets, G., Fedorova, E., and Bisseling, T., 2009. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell. 21, 2811-2828
    Liu, J., Liu, M. X., Qiu, L. P., and Xie, F. 2020a. SPIKE1 activates the GTPase ROP6 to guide the polarized growth of infection threads in Lotus japonicus. Plant Cell 32(12):3774-3791
    Liu, J., Novero, M., Charnikhova, T., Ferrandino, A., Shubert, A., Ruyter-Spira, C., Bonfante, P., Lovisolo, C., Bouwmeester, H. J., and Cardinale, F., 2013. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J. Exp. Bot. 64, 1967-1981
    Liu, S., Liao, L. L., Nie, M. M., Peng, W. T., Zhang, M. S., Lei, J. N., Zhong, Y. J., Liao, H., and Chen, Z. C., 2020b. A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean. New Phytol. 226, 1413-1428
    Lodwig, E. M., Hosie, A. H. F., Bourdes, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J. A., and Poole, P. S., 2003. Amino-acid cycling drives nitrogen fixation in the legume-rhizobium symbiosis. Nature 422, 722
    Maqbool, A., Horler, R. S. P., Muller, A., Wilkinson, A. J., Wilson, K. S., and Thomas, G. H., 2015. The substrate-binding protein in bacterial ABC transporters:dissecting roles in the evolution of substrate specificity. Biochem. Soc. Trans. 43, 1011-1017
    Masalkar, P., Wallace, I. S., Hwang, J. H. and Roberts, D. M., 2010. Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. Biol. Chem. J. 285, 23880-23888
    Maurer-Stroh, S. and Eisenhaber, F., 2005. Refinement and prediction of protein prenylation motifs. Genome Biol. 6, R55
    Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F., 2002. N-terminal N-myristoylation of proteins:prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541-557
    Mendoza-Suarez, M. A., Geddes, B. A., Sanchez-Canizares, C., Ramirez-Gonzalez, R. H., Kirchhelle, C., Jorrin, B., and Poole, P. S., 2020. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proc. Natl. Acad. Sci. U.S.A. 117, 9822-9831
    Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., and Kondorosi, E., 2003. A novel family in Medicago truncatula consisting of more than 3000 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 132, 161-173
    Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A. E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., and Kondorosi, E., 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. U.S.A. 103, 5230-5235
    Mishra, N. K., Chang, J., and Zhao, P. X., 2014. Prediction of membrane transport proteins and their substrate specificities using primary sequence information. PLoS One 9, e100278
    Miyawaki, K. N. and Yang, Z., 2014. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Front. Plant Sci. 5, 449
    Moreau, S., Thomson, R. M., Kaiser, B. N., Trevaskis, B., Guerinot, M. L., Udvardi, M. K., Puppo, A., and Day, D.A., 2002. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J. Biol. Chem. 277, 4738-4746
    Nguyen, T., Zelechowska, M., Foster, V., Bergmann, H. and Verma, D. P. S., 1985. Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc. Natl. Acad. Sci. U.S.A. 82, 5040-5044
    Noor, S. N. M., Day, D. A., and Smith, P. M., 2015. The symbiosome membrane. In Biological Nitrogen Fixation, eds John Wiley & Sons
    Oldroyd, G. E., Murray, J. D., Poole, P. S. and Downie, J. A., 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45,119-144
    Palmieri, F., Pierri, C. L., De Grassi, A., Nunes-Nesi, A. and Fernie, A. R., 2011. Evolution, structure and function of mitochondrial carriers:a review with new insights. Plant J. 66, 161-181
    Pan, H., and Wang, D., 2017. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Native Plants 3, 17048
    Pan, H., Oztas, O., Zhang, X., Wu, X., Stonoha, C., Wang, E., Wang, B., and Wang, D., 2016. A symbiotic SNARE protein generated by alternative termination of transcription. Native Plants 2, 15197
    Panter, S., Thomson, R., De Bruxelles, G., Laver, D., Trevaskis, B. and Udvardi, M., 2000. Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol. Plant Microbe Interact. 13, 325-333
    Penmetsa, R. V., and Cook, D. R. A. 1997. Legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527-530
    Perret, X., Staehelin, C., and Broughton, W. J., 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180-201
    Pessi, G., Ahrens, C. H., Rehrauer, H., Lindemann, A., Hauser, F., Fischer, H.M., and Hennecke, H., 2007. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol. Plant Microbe Interact. 20, 1353-1363
    Pierleoni, A., Martelli, P. L. and Casadio, R., 2008. PredGPI:a GPI-anchor predictor. BMC Bioinf. 9, 392
    Pii, Y., Molesini, B., Masiero, S., and Pandolfini, T., 2012. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC Plant Biol. 12, 233
    Pimpl, P., Movafeghi, A., Coughlan, S., Denecke, J., Hillmer, S., and Robinson, D. G., 2000. In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell. 12, 2219-2235
    Prell, J., White, J. P., Bourdes, A., Bunnewell, S., Bongaerts, R. J., and Poole, P. S., 2009. Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc. Natl. Acad. Sci. U.S.A. 106, 12477-12482
    Price G. D., Day, D. A. and Gresshoff, P. M., 1987. Rapid isolation of intact peribacteroid envelopes from soybean nodules and demonstration of selective permeability to metabolites. Physiol. Plantarum 130, 157-164
    R Core Team., 2018. R:a language and environment for statistical computing. http://www.R-project.org/
    Raffaele, S., Perraki, A., and Mongrand, S., 2013. The remorin C-terminal anchor was shaped by convergent evolution among membrane binding domains. Plant Signal. Behav. 8, e23207
    Ren, B., Wang, X., Duan, J., and Ma, J., 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919-922
    Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., and Yao, X., 2008. CSS-Palm 2.0:an updated software for palmitoylation sites prediction. Protein Eng. Des. Sel. 21, 639-644
    Robertson, J. G., and Lyttleton, P., 1984. Division of peribacteroid membranes in root nodules of white clover. J. Cell Sci. 69, 147-157
    Rosendahl, L., Glenn, A. R., and Dilworth, M. J., 1991. Organic and inorganic inputs into legume root nodule nitrogen fixation. In:Dilworth M J, Glenn A R, editors. Biology and Biochemistry of Nitrogen Fixation. New York, N.Y:Elsevier. 259-291
    Roth, L. E. and Stacey, G., 1989. Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur. J. Cell Biol. 49, 24-32
    Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., and Udvardi, M. K., 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15-41
    Saalbach, G., Erik, P. and Wienkoop, S., 2002. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea, Pisum sativum symbiosomes. Proteomics 2, 325-337
    Salminen, T. A., Kristina, B. and Johan, E., 2016. Lipid transfer proteins:classification, nomenclature, structure, and function. Planta 244, 971-997
    Schwacke, R., Ponce-Soto, G. Y., Krause, K., Bolger, A. M., Arsova, B., Hallab, A., Gruden, K., Stitt, M., Bolger, M. E., and Usadel, B., 2019. MapMan4:a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879-892
    Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M., 2011. Global quantification of mammalian gene expression control. Nature 473, 337-342
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504
    Shiu, S. H, and Bleecker, A. B., 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98, 10763-10768
    Stevens, T. J. and Arkin, I. T., 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39, 417-420
    Streeter, J. G., 1980. Carbohydrates in soybean nodules:II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiol.66, 471-476
    Strodtman, K. N., Stevenson, S. E., Waters, J. K., Mawhinney, T. P., Thelen, J. J., Polacco, J. C., Emerich, D. W. The bacteroid periplasm in soybean nodules is an interkingdom symbiotic space. Mol. Plant Microbe Interact. 30, 997-1008
    Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M., 2017. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139, 3997-4006, 2012
    Szklarczyk, D., Franceschini, A., Wyder, S., et al., 2014. STRING v10:protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 447-452
    Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D., and Koonin, E. V., 2018. The COG database:new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22-28
    Thul, P. J., Akesson, L., Wiking, M., et al., 2017. A subcellular map of the human proteome. Science 356, eaal3321
    Udvardi, M. and Poole, P. S., 2013. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781-805
    Udvardi, M. K., and Day, D. A., 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Mol. Biol. 48, 493-523
    Van de Velde, W., Zehirov, G., Sztmari, A., et al., 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122-1126
    Vincill, E. D., Szczyglowski, K., and Roberts, D. M., 2005. GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate. New Phytol. 137, 1435-1444
    Wang, C., Zhu, M., Duan, L., Yu, H., Chang, X., Li, L., Kang, H., Feng, Y., Zhu, H., Hong, Z., and Zhang, Z., 2015. Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation. Plant Physiol. 167, 1497-1510
    Wang, D., and Dong, X., 2011. A highway for war and peace:the secretory pathway in plant-microbe interactions. Mol. Plant 4, 581-587
    Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., and Long, S., 2010. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126-1129
    White, J., Prell, J., James, E. K., and Poole, P., 2007. Nutrient sharing between symbionts. Plant Physiol. 144, 604-614
    Whitehead, L. F., and Day, D. A., 1997. The peribacteroid membrane. Physiol. Plantarum 100, 30-44
    Whitney, J. A., Gomez, M., Sheff, D., Kreis, T. E. and Mellman, I., 1995. Cytoplasmic coat proteins involved in endosome function. Cell 83, 703-713
    Wienkoop, S. and Saalbach, G., 2003. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiol. 131, 1080-1090
    Yang, Z. and Fu, Y., 2007. ROP/Rac GTPase signaling. Curr. Opin. Plant Biol. 10, 490-494
    Zurzolo, C. and Simons, K., 2016. Glycosylphosphatidylinositol-anchored proteins:membrane organization and transport. Biochim. Biophys. Acta 1858, 632-639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (444) PDF downloads (94) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return