5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

Mesenteric lymph system constitutes the second route in gut-liver axis and transports metabolism-modulating gut microbial metabolites

doi: 10.1016/j.jgg.2022.03.012
Funds:

This work is supported by the National Natural Science Foundation of China (91857101), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29020000), and the National Key Research and Development Program of China (2018YFC2000500).

  • Received Date: 2022-03-23
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-23
  • Publish Date: 2022-04-11
  • The gut–liver axis denotes the intricate connection and interaction between gut microbiome and liver, in which compositional and functional shifts in gut microbiome affect host metabolism. Hepatic portal vein of the blood circulation system has been thought to be the major route for metabolite transportation in the gut–liver axis, but the existence and importance of other routes remain elusive. Here, we perform metabolome comparison in blood circulation and mesenteric lymph systems and identify significantly shifted metabolites in serum and mesentery. Using cellular assays, we find that the majority of decreased metabolites in lymph system under high-fat diet are effective in alleviating metabolic disorders, indicating a high potential of lymph system in regulating liver metabolism. Among those, a representative metabolite, L-carnitine, reduces diet-induced obesity in mice. Metabolic tracing analysis identifies that L-carnitine is independently transported by the mesenteric lymph system, serving as an example that lymph circulation comprises a second route in the gut–liver axis to modulate liver metabolism. Our study provides new insights into metabolite transportation via mesenteric lymph system in the gut–liver axis, offers an extended scope for the investigations in host-gut microbiota metabolic interactions and potentially new targets in the treatment of metabolic disorders.
  • loading
  • Albillos, A., de Gottardi, A.,Rescigno, M., 2020. The gut-liver axis in liver disease:Pathophysiological basis for therapy. Journal of hepatology 72, 558-577
    Bar, N., Korem, T., Weissbrod, O., Zeevi, D., Rothschild, D., Leviatan, S., Kosower, N., Lotan-Pompan, M., Weinberger, A., Le Roy, C.I., et al., 2020. A reference map of potential determinants for the human serum metabolome. Nature 588, 135-140
    Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V.,Fedotcheva, N., 2012. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of biomedical science 19, 89
    Beloborodova, N.V., Khodakova, A.S., Bairamov, I.T.,Olenin, A.Y., 2009. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry Biokhimiia 74, 1350-1355
    Berg, R.D., 1999. Bacterial translocation from the gastrointestinal tract. Advances in experimental medicine and biology 473, 11-30
    Bolger, A.M., Lohse, M.,Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 2114-2120
    Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., et al., 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761-1772
    Cao, E., Watt, M.J., Nowell, C.J., Quach, T., Simpson, J.S., De Melo Ferreira, V., Agarwal, S., Chu, H., Srivastava, A., Anderson, D., et al., 2021. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nature metabolism 3, 1175-1188
    Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884-i890
    Cifarelli, V.,Eichmann, A., 2019. The Intestinal Lymphatic System:Functions and Metabolic Implications. Cellular and molecular gastroenterology and hepatology 7, 503-513
    de Jong, P.R., Gonzalez-Navajas, J.M.,Jansen, N.J., 2016. The digestive tract as the origin of systemic inflammation. Critical care (London, England) 20, 279
    Dehghan, P., Farhangi, M.A., Nikniaz, L., Nikniaz, Z.,Asghari-Jafarabadi, M., 2020. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults:An exploratory systematic review and dose-response meta- analysis. Obesity reviews:an official journal of the International Association for the Study of Obesity 21, e12993
    Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M., Nolan, G.P., Fischbach, M.A., et al., 2017. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648-652
    Dunn, W.B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J.D., Halsall, A., Haselden, J.N., et al., 2011. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature protocols 6, 1060-1083
    Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., et al., 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nature methods 15, 962-968
    Fu, B.C., Hullar, M.A.J., Randolph, T.W., Franke, A.A., Monroe, K.R., Cheng, I., Wilkens, L.R., Shepherd, J.A., Madeleine, M.M., Le Marchand, L., et al., 2020. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. The American journal of clinical nutrition 111, 1226-1234
    Harris, H.C., Morrison, D.J.,Edwards, C.A., 2020. Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota in vitro-a systematic scoping review and secondary analysis. Critical reviews in food science and nutrition, 1-12
    Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., et al., 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179-185
    Kim, D., Langmead, B.,Salzberg, S.L., 2015. HISAT:a fast spliced aligner with low memory requirements. Nature methods 12, 357-360
    Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., et al., 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature communications 4, 1829
    Konturek, P.C., Harsch, I.A., Konturek, K., Schink, M., Konturek, T., Neurath, M.F., Zopf, Y., 2018. Gut-liver axis:How do gut bacteria influence the liver? Med. Sci. 6, 79
    Kuan, E.L., Ivanov, S., Bridenbaugh, E.A., Victora, G., Wang, W., Childs, E.W., Platt, A.M., Jakubzick, C.V., Mason, R.J., Gashev, A.A., et al., 2015. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue dendritic cells. Journal of immunology (Baltimore, Md:1950) 194, 5200-5210
    Li, J., Li, E., Czepielewski, R.S., Chi, J., Guo, X., Han, Y.H., Wang, D., Wang, L., Hu, B., Dawes, B., et al., 2021. Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metab 33, 1449-1465 e1446
    Liu, R., Hong, J., Xu, X., Feng, Q., Zhang, D., Gu, Y., Shi, J., Zhao, S., Liu, W., Wang, X., et al., 2017. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23, 859-868
    Love, M.I., Huber, W.,Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15, 550
    Luo, P., Yin, P., Hua, R., Tan, Y., Li, Z., Qiu, G., Yin, Z., Xie, X., Wang, X., Chen, W., et al., 2018. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology (Baltimore, Md) 67, 662-675
    Martin-Mateos, R.,Albillos, A., 2021. The Role of the Gut-Liver Axis in Metabolic Dysfunction-Associated Fatty Liver Disease. Frontiers in immunology 12, 660179
    Martinez-del Campo, A., Bodea, S., Hamer, H.A., Marks, J.A., Haiser, H.J., Turnbaugh, P.J.,Balskus, E.P., 2015. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6
    Miller, H.R.,Pemberton, A.D., 2002. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105, 375-390
    Milosevic, I., Vujovic, A., Barac, A., Djelic, M., Korac, M., Radovanovic Spurnic, A., Gmizic, I., Stevanovic, O., Djordjevic, V., Lekic, N., et al., 2019. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases:A Review of the Literature. International journal of molecular sciences 20
    Miura, S., Sekizuka, E., Nagata, H., Oshio, C., Minamitani, H., Suematsu, M., Suzuki, M., Hamada, Y., Kobayashi, K., Asakura, H., et al., 1987. Increased lymphocyte transport by lipid absorption in rat mesenteric lymphatics. The American journal of physiology 253, G596-600
    Morrison, D.J.,Preston, T., 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes 7, 189-200
    Mukherjee, A., Hooks, J.,Dixon, J.B. 2018. Physiology:Lymph Flow, in:Lee, B.-B., Rockson, S.G., Bergan, J. (Eds.), Lymphedema:A Concise Compendium of Theory and Practice. Springer International Publishing, Cham, pp. 91-111
    O'Boyle, C.J., MacFie, J., Mitchell, C.J., Johnstone, D., Sagar, P.M.,Sedman, P.C., 1998. Microbiology of bacterial translocation in humans. Gut 42, 29-35
    Prin, M., Bakker, J.,Wagener, G., 2015. Hepatosplanchnic circulation in cirrhosis and sepsis. World journal of gastroenterology 21, 2582-2592
    Randolph, G.J., Ivanov, S., Zinselmeyer, B.H.,Scallan, J.P., 2017. The Lymphatic System:Integral Roles in Immunity. Annual review of immunology 35, 31-52
    Ringseis, R., Gessner, D.K.,Eder, K., 2020. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annual review of animal biosciences 8, 295-319
    Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., Villacorta, L., Fan, Y., Chang, L., Wang, L., et al., 2020. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science translational medicine 12
    Rutkowski, J.M., 2021. Fixing lymphatics improves glucose metabolism. Nature metabolism 3, 1139-1141
    Sato, H., Zhang, L.S., Martinez, K., Chang, E.B., Yang, Q., Wang, F., Howles, P.N., Hokari, R., Miura, S.,Tso, P., 2016. Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats. Gastroenterology 151, 923-932
    Schroeder, B.O.,Backhed, F., 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22, 1079-1089
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.,Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498-2504
    Shibuya, M., 2015. VEGF-VEGFR System as a Target for Suppressing Inflammation and other Diseases. Endocrine, metabolic & immune disorders drug targets 15, 135-144
    Son, G., Kremer, M.,Hines, I.N., 2010. Contribution of gut bacteria to liver pathobiology. Gastroenterology research and practice 2010
    Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., et al., 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24, 1919-1929
    Tajiri, K.,Shimizu, Y., 2013. Branched-chain amino acids in liver diseases. World journal of gastroenterology 19, 7620-7629
    Thingholm, L.B., Ruhlemann, M.C., Koch, M., Fuqua, B., Laucke, G., Boehm, R., Bang, C., Franzosa, E.A., Hubenthal, M., Rahnavard, A., et al., 2019. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host Microbe 26, 252-264 e210
    Tripathi, A., Debelius, J., Brenner, D.A., Karin, M., Loomba, R., Schnabl, B.,Knight, R., 2018. The gut-liver axis and the intersection with the microbiome. Nature reviews Gastroenterology & hepatology 15, 397-411
    Truong, D.T., Franzosa, E.A., Tickle, T.L., Scholz, M., Weingart, G., Pasolli, E., Tett, A., Huttenhower, C.,Segata, N., 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature methods 12, 902-903
    Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., Li, H., Wang, R., Tang, J., Huang, T., et al., 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors:a 6-month randomised controlled-feeding trial. Gut 68, 1417-1429
    Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B.,Tilg, H., 2021. Gut microbiome, liver immunology, and liver diseases. Cellular & molecular immunology 18, 4-17
    Wang, T.Y., Liu, M., Portincasa, P.,Wang, D.Q., 2013. New insights into the molecular mechanism of intestinal fatty acid absorption. European journal of clinical investigation 43, 1203-1223
    Wei, W., Jiang, W., Tian, Z., Wu, H., Ning, H., Yan, G., Zhang, Z., Li, Z., Dong, F., Sun, Y., et al., 2021. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clinical nutrition (Edinburgh, Scotland) 40, 4234-4245
    Yu, D., Zhou, L., Xuan, Q., Wang, L., Zhao, X., Lu, X.,Xu, G., 2018. Strategy for Comprehensive Identification of Acylcarnitines Based on Liquid Chromatography-High-Resolution Mass Spectrometry. Analytical chemistry 90, 5712-5718
    Yu, G., Wang, L.G., Han, Y.,He, Q.Y., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. Omics:a journal of integrative biology 16, 284-287
    Yuan, M., Breitkopf, S.B., Yang, X.,Asara, J.M., 2012. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature protocols 7, 872-881
    Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., Sun, D., Ren, Z., Li, M., Zhao, M., et al., 2021. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 33, 791-803 e797
    Zhou, A., Qu, J., Liu, M.,Tso, P., 2020. The Role of Interstitial Matrix and the Lymphatic System in Gastrointestinal Lipid and Lipoprotein Metabolism. Frontiers in physiology 11, 4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1337) PDF downloads (154) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return