5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 11
Nov.  2022
Turn off MathJax
Article Contents

Genetic structure and domestication footprints of the tusk, coat color, and ear morphology in East Chinese pigs

doi: 10.1016/j.jgg.2022.03.011
Funds:

This work was supported by Chinese Postdoctoral Science Foundation (2020M682735), the National Natural Science Foundation of China (31702089), and Jiangxi Youth Science Foundation (20202BABL215021).

  • Received Date: 2021-12-14
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-03-21
  • Publish Date: 2022-04-09
  • The domestication and artificial selection of wild boars have led to dramatic morphological and behavioral changes, especially in East Chinese (ECN) pigs. Here, we provide insights into the population structure and current genetic diversity of representative ECN pig breeds. We identify a 500-kb region containing six tooth development-relevant genes with almost completely different haplotypes between ECN pigs and Chinese wild boars or European domestic pigs. Notably, the c.195A>G missense mutation in exon 2 of AMBN may cause alterations in its protein structure associated with tusk degradation in ECN pigs. In addition, ESR1 may play an important role in the reproductive performance of ECN pigs. A major haplotype of the large lop ear-related MSRB3 gene and eight alleles in the deafness-related GRM7 gene may affect ear morphology and hearing in ECN pigs. Interestingly, we find that the two-end black (TEB) coat color in Jinhua pigs is most likely caused by EDNRB with genetic mechanisms different from other Chinese TEB pigs. This study identifies key loci that may be artificially selected in Chinese native pigs related to the tusk, coat color, and ear morphology, thus providing new insights into the genetic mechanisms of domesticated pigs.
  • loading
  • Ai, H., Huang, L.,Ren, J., 2013. Genetic diversity, linkage disequilibrium and selection signatures in chinese and western pigs revealed by genome-wide snp markers. PLoS One 8, e56001
    Alexander, D.H., Novembre, J.,Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664
    Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q., Kinch, L.N., Schaeffer, R.D., et al., 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871-876
    Browning, S.R.,Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M.,Lee, J.J., 2015. Second-generation plink: Rising to the challenge of larger and richer datasets. Gigascience 4, 7
    Chen, C., Liu, C., Xiong, X., Fang, S., Yang, H., Zhang, Z., Ren, J., Guo, Y.,Huang, L., 2018. Copy number variation in the msrb3 gene enlarges porcine ear size through a mechanism involving mir-584-5p. Genet. Sel. Evol. 50, 72
    Chen, H., Huang, M., Yang, B., Wu, Z., Deng, Z., Hou, Y., Ren, J.,Huang, L., 2020. Introgression of eastern chinese and southern chinese haplotypes contributes to the improvement of fertility and immunity in european modern pigs. Gigascience 9, giaa014
    Chen, L., Guo, W., Ren, L., Yang, M., Zhao, Y., Guo, Z., Yi, H., Li, M., Hu, Y., Long, X., et al., 2016. A de novo silencer causes elimination of mitf-m expression and profound hearing loss in pigs. BMC Biol. 14, 52
    Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., et al., 2019. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and vcftools. Bioinformatics 27, 2156-2158
    Evin, A., Cucchi, T., Cardini, A., Vidharsdottir, U., Larson, G.,Dobney, K., 2013. The long and winding road: Identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735-743
    Evin, A., Dobney, K.,Cucchi, T. 2017. A history of pig domestication: New ways of exploring a complex process, in: Meijaard, E., Melletti, M. (Eds.), Ecology, conservation and management of wild pigs and peccaries. Cambridge University Press, Cambridge, pp. 39-48
    Fang, M.Y., Larson, G., Ribeiro, H.S., Li, N.,Andersson, L., 2009. Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet. 5, e1000341
    Felsenstein, J., 1989. Phylip-phylogeny inference package (version 3.2). Cladistics-the International Journal of the Willi Hennig Society 5, 164-166
    Frantz, L.A., Schraiber, J.G., Madsen, O., Megens, H.J., Cagan, A., Bosse, M., Paudel, Y., Crooijmans, R.P., Larson, G.,Groenen, M.A., 2015. Evidence of long-term gene flow and selection during domestication from analyses of eurasian wild and domestic pig genomes. Nat. Genet. 47, 1141-1148
    Friedman, T.B., Belyantseva, I.A.,Frolenkov, G.I., 2020. Myosins and hearing. Adv. Exp. Med. Biol. 1239, 317-330
    Fu, Y., Li, C., Tang, Q., Tian, S., Jin, L., Chen, J., Li, M.,Li, C., 2016. Genomic analysis reveals selection in chinese native black pig. Sci. Rep. 6, 36354
    Gao, L., Xu, S.S., Yang, J.Q., Shen, M.,Li, M.H., 2018. Genome-wide association study reveals novel genes for the ear size in sheep (ovis aries). Anim. Genet. 49, 345-348
    Ge, J., 1997. History of chinese immigration. Fujian: Fujian People's Publishing House
    Huang, M., Yang, B., Chen, H., Zhang, H., Wu, Z., Ai, H., Ren, J.,Huang, L., 2020. The fine-scale genetic structure and selection signals of chinese indigenous pigs. Evol. Appl. 13, 458-475
    Kawasaki, K., Lafont, A.G.,Sire, J.Y., 2011. The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 28, 2053-2061
    Kendig, K.I., Baheti, S., Bockol, M.A., Drucker, T.M., Hart, S.N., Heldenbrand, J.R., Hernaez, M., Hudson, M.E., Kalmbach, M.T., Klee, E.W., et al., 2019. Sentieon dnaseq variant calling workflow demonstrates strong computational performance and accuracy. Front. Genet. 10, 736
    Larson, G., Liu, R., Zhao, X., Yuan, J., Fuller, D., Barton, L., Dobney, K., Fan, Q., Gu, Z., Liu, X.H., et al., 2010. Patterns of east asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc. Natl. Acad. Sci. U. S. A. 107, 7686-7691
    Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754-1760
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,Genome Project Data Processing, S., 2009. The sequence alignment/map format and samtools. Bioinformatics 25, 2078-2079
    Li, W.T., Zhang, M.M., Li, Q.G., Tang, H., Zhang, L.F., Wang, K.J., Zhu, M.Z., Lu, Y.F., Bao, H.G., Zhang, Y.M., et al., 2017. Whole-genome resequencing reveals candidate mutations for pig prolificacy. Proc. Biol. Sci. 284
    Liang, J., Zhang, Y., Wang, L., Liu, X., Yan, H., Wang, L.,Zhang, L., 2019. Molecular cloning of wif1 and hmga2 reveals ear-preferential expression while uncovering a missense mutation associated with porcine ear size in wif1. Anim. Genet. 50, 157-161
    Liang, T., Hu, Y., Smith, C.E., Richardson, A.S., Zhang, H., Yang, J., Lin, B., Wang, S.K., Kim, J.W., Chun, Y.H., et al., 2019. Ambn mutations causing hypoplastic amelogenesis imperfecta and ambn knockout-nls-lacz knockin mice exhibiting failed amelogenesis and ambn tissue-specificity. Mol. Genet. Genomic Med. 7, e929
    Marcet-Palacios, M., Reyes-Serratos, E., Gonshor, A., Buck, R., Lacy, P.,Befus, A.D., 2020. Structural and posttranslational analysis of human calcium-binding protein, spermatid-associated 1. J. Cell. Biochem. 121, 4945-4958
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303
    Miao, Z.G., Wang, L.J., Xu, Z.R., Huang, J.F.,Wang, Y.R., 2009. Developmental changes of carcass composition, meat quality and organs in the jinhua pig and landrace. Animal 3, 468-473
    Miles, A., Iqbal, Z., Vauterin, P., Pearson, R., Campino, S., Theron, M., 2016. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 26 (9), 1288–1299. https://doi.org/10.1101/gr.203711.115
    Mu, Y., Tian, R., Xiao, L., Sun, D., Zhang, Z., Xu, S.,Yang, G., 2021. Molecular evolution of tooth-related genes provides new insights into dietary adaptations of mammals. J. Mol. Evol. 89, 458-471
    Owen, J., Dobney, K., Evin, A., Cucchi, T., Larson, G.,Vi Da Rsdottir, U.S., 2014. The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (sus scrofa) using 3d geometric morphometrics. J. Archaeol. Sci. 43, 159-167
    Oyelami, F.O., Zhao, Q., Xu, Z., Zhang, Z., Sun, H., Zhang, Z., Ma, P., Wang, Q.,Pan, Y., 2020. Haplotype block analysis reveals candidate genes and qtls for meat quality and disease resistance in chinese jiangquhai pig breed. Front. Genet. 11, 752
    Paradis, E., 2010. Pegas: An r package for population genetics with an integrated-modular approach. Bioinformatics 26, 419-420
    Payne, S.,Bull, G., 1988. Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia 2, 2
    Pickrell, J.K.,Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967
    Ren, J., Duan, Y., Qiao, R., Yao, F., Zhang, Z., Yang, B., Guo, Y., Xiao, S., Wei, R., Ouyang, Z., et al., 2011. A missense mutation in ppard causes a major qtl effect on ear size in pigs. PLoS Genet. 7, e1002043
    Ren, J., Mao, H., Zhang, Z., Xiao, S., Ding, N.,Huang, L., 2011. A 6-bp deletion in the tyrp1 gene causes the brown colouration phenotype in chinese indigenous pigs. Heredity (Edinb) 106, 862-868
    Rubin, C.J., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., et al., 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587-591
    Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E.H., McCarroll, S.A., Gaudet, R., et al., 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918
    Simmer, J.P., Papagerakis, P., Smith, C.E., Fisher, D.C., Rountrey, A.N., Zheng, L.,Hu, J.C., 2010. Regulation of dental enamel shape and hardness. J. Dent. Res. 89, 1024-1038
    Wang, C., Wang, H., Zhang, Y., Tang, Z., Li, K.,Liu, B., 2015. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in chinese domestic pigs. Mol. Ecol. Resour. 15, 414-424
    Wang, L., Wang, A., Wang, L., Li, K., Yang, G., He, R., Qian, L., Xu, N., Huang, R., Peng, Z., et al., 2011. Animal genetic resources in china: Pigs. China Agriculture Press
    Wang, Z., Sun, H., Chen, Q., Zhang, X., Wang, Q.,Pan, Y., 2019. A genome scan for selection signatures in taihu pig breeds using next-generation sequencing. Animal 13, 683-693
    Weir, B.S.,Cockerham, C.C., 1984. Estimating f-statistics for the analysis of population structure. Evolution 38, 1358-1370
    White, S., 2011. From globalized pig breeds to capitalist pigs: A study in animal cultures and evolutionary history. Environ. Hist-US. 16, 94-120
    Wu, Z., Deng, Z., Huang, M., Hou, Y., Zhang, H., Chen, H.,Ren, J., 2019. Whole-genome resequencing identifies kit new alleles that affect coat color phenotypes in pigs. Front. Genet. 10, 218
    Yang, J., Lee, S.H., Goddard, M.E.,Visscher, P.M., 2011. Gcta: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82
    Yu, P., Jiao, J., Chen, G., Zhou, W., Zhang, H., Wu, H., Li, Y., Gu, G., Zheng, Y., Yu, Y., et al., 2018. Effect of grm7 polymorphisms on the development of noise-induced hearing loss in chinese han workers: A nested case-control study. BMC Med. Genet. 19, 4
    Zhang, F.,Cai, F., 2013. The spread of chinese pig breeds and its influence on the improvement of pig breeds in the world. Swine industry science 30, 132-133
    Zhang, Y., Liang, J., Zhang, L., Wang, L., Liu, X., Yan, H., Zhao, K., Shi, H., Zhang, T., Li, N., et al., 2015. Porcine methionine sulfoxide reductase b3: Molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in sus scrofa. J. Anim. Sci. Biotechnol. 6, 60
    Zhang, Z., Zhang, X.,Li, J., 1994. The superior breed of chinese pigs and its contribution to the world pig industry. Journal of Natural Resources, 1-8
    Zhao, P., Yu, Y., Feng, W., Du, H., Yu, J., Kang, H., Zheng, X., Wang, Z., Liu, G.E., Ernst, C.W., et al., 2018. Evidence of evolutionary history and selective sweeps in the genome of meishan pig reveals its genetic and phenotypic characterization. Gigascience 7, giy058
    Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C.,Chanda, S.K., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523
    Zou, S., Mei, X., Yang, W., Zhu, R., Yang, T.,Hu, H., 2020. Whole-exome sequencing identifies rare pathogenic and candidate variants in sporadic chinese han deaf patients. Clin. Genet. 97, 352-356
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads (32) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return