Bae, S., Park, J.,Kim, J.S., 2014. Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England) 30, 1473-1475
|
Chatterjee, P., Jakimo, N.,Jacobson, J.M., 2018. Minimal PAM specificity of a highly similar SpCas9 ortholog. Science advances 4, eaau0766
|
Chen, L., Park, J.E., Paa, P., Rajakumar, P.D., Prekop, H.T., Chew, Y.T., Manivannan, S.N.,Chew, W.L., 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature communications 12, 1384
|
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339, 819-823
|
Dalhus, B., Alseth, I.,Bjoeras, M., 2015. Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. Progress in biophysics and molecular biology 117, 134-142
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I.,Liu, D.R., 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471
|
Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L.,Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature biotechnology 36, 977-982
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A.,Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337, 816-821
|
Kim, D., Kim, D.E., Lee, G., Cho, S.I.,Kim, J.S., 2019a. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nature biotechnology 37, 430-435
|
Kim, D., Luk, K., Wolfe, S.A.,Kim, J.S., 2019b. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual review of biochemistry 88, 191-220
|
Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T.,Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature biotechnology 35, 371-376
|
Knott, G.J.,Doudna, J.A., 2018. CRISPR-Cas guides the future of genetic engineering. Science (New York, NY) 361, 866-869
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A.,Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424
|
Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J.,Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature biotechnology 39, 41-46
|
Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D.,Ellenberger, T., 2000. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences of the United States of America 97, 13573-13578
|
Lee, C., Hyun Jo, D., Hwang, G.H., Yu, J., Kim, J.H., Park, S.E., Kim, J.S., Kim, J.H.,Bae, S., 2019. CRISPR-Pass:Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular therapy:the journal of the American Society of Gene Therapy 27, 1364-1371
|
Lee, S., Ding, N., Sun, Y., Yuan, T., Li, J., Yuan, Q., Liu, L., Yang, J., Wang, Q., Kolomeisky, A.B., et al., 2020. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science advances 6, eaba1773
|
Lin, Q., Zhu, Z., Liu, G., Sun, C., Lin, D., Xue, C., Li, S., Zhang, D., Gao, C., Wang, Y., et al., 2021. Genome editing in plants with MAD7 nuclease. Journal of genetics and genomics=Yi chuan xue bao 48, 444-451
|
Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C.,Wang, K., 2019. Hi-TOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life sciences 62, 1-7
|
Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L.,Li, Z., 2020a. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell death & disease 11, 36
|
Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L.,Li, Z., 2020b. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC biology 18, 111
|
Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R.,Olson, E.N., 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science (New York, NY) 351, 400-403
|
Min, Y.L., Chemello, F., Li, H., Rodriguez-Caycedo, C., Sanchez-Ortiz, E., Mireault, A.A., McAnally, J.R., Shelton, J.M., Zhang, Y., Bassel-Duby, R., et al., 2020. Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular therapy:the journal of the American Society of Gene Therapy 28, 2044-2055
|
Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al., 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science (New York, NY) 361, 1259-1262
|
Rees, H.A.,Liu, D.R., 2018. Base editing:precision chemistry on the genome and transcriptome of living cells. Nature reviews Genetics 19, 770-788
|
Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature biotechnology
|
Song, Y., Yuan, L., Wang, Y., Chen, M., Deng, J., Lv, Q., Sui, T., Li, Z.,Lai, L., 2016. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular and molecular life sciences:CMLS 73, 2959-2968
|
Walton, R.T., Christie, K.A., Whittaker, M.N.,Kleinstiver, B.P., 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science (New York, NY) 368, 290-296
|
Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang, D., Chen, K., Qiu, J.L.,Gao, C., 2020. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nature biotechnology 38, 1460-1465
|
Wu, Y., Yuan, Q., Zhu, Y., Gao, X., Song, J.,Yin, Z., 2020. Improving FnCas12a Genome Editing by Exonuclease Fusion. Crispr j 3, 503-511
|
Yu, W., Li, J., Huang, S., Li, X., Li, P., Li, G., Liang, A., Chi, T.,Huang, X., 2021. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC biology 19, 34
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771
|
Zhang, Q., Yin, K., Liu, G., Li, S., Li, M.,Qiu, J.L., 2020. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Science China Life sciences 63, 1918-1927
|
Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C.,Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature biotechnology 39, 35-40
|