Abe, H., Alavattam, K.G., Hu, Y.C., Pang, Q., Andreassen, P.R., Hegde, R.S., Namekawa, S.H., 2020. The initiation of meiotic sex chromosome inactivation sequesters DNA damage signaling from autosomes in mouse spermatogenesis. Curr. Biol. 30, 408-420 e405
|
Bastos, H., Lassalle, B., Chicheportiche, A., Riou, L., Testart, J., Allemand, I., Fouchet, P., 2005. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A. 65, 40-49
|
Bellve, A.R., Cavicchia, J.C., Millette, C.F., O'Brien, D.A., Bhatnagar, Y.M., Dym, M., 1977. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68-85
|
Blanco-Rodriguez, J., 2009. gammaH2AX marks the main events of the spermatogenic process. Microsc. Res. Tech. 72, 823-832
|
Bolcun-Filas, E., Handel, M.A., 2018. Meiosis: the chromosomal foundation of reproduction. Biol. Reprod. 99, 112-126
|
Borner, G.V., Kleckner, N., Hunter, N., 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell. 117, 29-45
|
Burgoyne, P.S., Mahadevaiah, S.K., Turner, J.M., 2007. The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. Bioessays. 29, 974-986
|
Burgoyne, P.S., Mahadevaiah, S.K., Turner, J.M., 2009. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 10, 207-216
|
Chen, H., Lisby, M., Symington, L.S., 2013. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell. 50, 589-600
|
Chen, Y., Zheng, Y., Gao, Y., Lin, Z., Yang, S., Wang, T., Wang, Q., Xie, N., Hua, R., Liu, M., et al., 2018. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 28, 879-896
|
Choi, E., Han, C., Park, I., Lee, B., Jin, S., Choi, H., Kim, D.H., Park, Z.Y., Eddy, E.M., Cho, C., 2008. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis. J. Biol. Chem. 283, 35283-35294
|
Dix, D.J., Allen, J.W., Collins, B.W., Mori, C., Nakamura, N., Poorman-Allen, P., Goulding, E.H., Eddy, E.M., 1996. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci. U.S.A. 93, 3264-3268
|
Dix, D.J., Allen, J.W., Collins, B.W., Poorman-Allen, P., Mori, C., Blizard, D.R., Brown, P.R., Goulding, E.H., Strong, B.D., Eddy, E.M., 1997. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development. 124, 4595-4603
|
Drabent, B., Bode, C., Bramlage, B., Doenecke, D., 1996. Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem. Cell Biol. 106, 247-251
|
Gaysinskaya, V., Soh, I.Y., van der Heijden, G.W., Bortvin, A., 2014. Optimized flow cytometry isolation of murine spermatocytes. Cytometry A. 85, 556-565
|
Gerton, J.L., Hawley, R.S., 2005. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477-487
|
Goetz, P., Chandley, A.C., Speed, R.M., 1984. Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J. Cell Sci. 65, 249-263
|
Handel, M.A., Schimenti, J.C., 2010. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat. Rev. Genet. 11, 124-136
|
Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L., Ayer, D.E., 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 89, 341-347
|
Heinzel, T., Lavinsky, R.M., Mullen, T.M., Soderstrom, M., Laherty, C.D., Torchia, J., Yang, W.M., Brard, G., Ngo, S.D., Davie, J.R., et al., 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 387, 43-48
|
Hirota, T., Blakeley, P., Sangrithi, M.N., Mahadevaiah, S.K., Encheva, V., Snijders, A.P., ElInati, E., Ojarikre, O.A., de Rooij, D.G., Niakan, K.K., et al., 2018. SETDB1 links the meiotic DNA damage response to sex chromosome silencing in mice. Dev. Cell 47, 645-659 e646
|
Horisawa-Takada, Y., Kodera, C., Takemoto, K., Sakashita, A., Horisawa, K., Maeda, R., Shimada, R., Usuki, S., Fujimura, S., Tani, N., et al., 2021. Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat. Commun. 12, 3184
|
Hunter, N., 2015. Meiotic recombination: the essence of heredity. Cold Spring Harbor Perspect. Biol. 7
|
Jacob, C., Christen, C.N., Pereira, J.A., Somandin, C., Baggiolini, A., Lotscher, P., Ozcelik, M., Tricaud, N., Meijer, D., Yamaguchi, T., et al., 2011. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci. 14, 429-436
|
Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., Henikoff, S., 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930
|
Keeney, S., Giroux, C.N., Kleckner, N., 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 88, 375-384
|
Kelly, R.D., Cowley, S.M., 2013. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem. Soc. Trans. 41, 741-749
|
Kleckner, N., 1996. Meiosis: how could it work? Proc. Natl. Acad. Sci. U.S.A. 93, 8167-8174
|
Kluin, P.M., Kramer, M.F., de Rooij, D.G., 1982. Spermatogenesis in the immature mouse proceeds faster than in the adult. Int. J. Androl. 5, 282-294
|
Kohl, K.P., Sekelsky, J., 2013. Meiotic and mitotic recombination in meiosis. Genetics. 194, 327-334
|
Li, M., Zheng, J., Li, G., Lin, Z., Li, D., Liu, D., Feng, H., Cao, D., Ng, E.H.Y., Li, R.H.W., et al., 2021. The male germline-specific protein MAPS is indispensable for pachynema progression and fertility. Proc. Natl. Acad. Sci. U.S.A. 118
|
Li, Y.S., Meng, R.R., Chen, X., Shang, C.L., Li, H.B., Zhang, T.J., Long, H.Y., Li, H.Q., Wang, Y.J., Wang, F.C., 2019. Generation of H11-albumin-rtTA transgenic mice: a tool for inducible gene expression in the liver. G3 (Bethesda). 9, 591-599
|
Liu, Y.J., Liu, C., Chang, Z., Wadas, B., Brower, C.S., Song, Z.H., Xu, Z.L., Shang, Y.L., Liu, W.X., Wang, L.N., et al., 2016. Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway. J. Biol. Chem. 291, 7426-7438
|
Millard, C.J., Watson, P.J., Fairall, L., Schwabe, J.W.R., 2017. Targeting class I histone deacetylases in a "complex" environment. Trends Pharmacol. Sci. 38, 363-377
|
Mondal, B., Jin, H., Kallappagoudar, S., Sedkov, Y., Martinez, T., Sentmanat, M.F., Poet, G.J., Li, C., Fan, Y., Pruett-Miller, S.M., et al., 2020. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. Elife. 9
|
Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L., Evans, R.M., 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 89, 373-380
|
Neale, M.J., Keeney, S., 2006. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature. 442, 153-158
|
Oura, S., Koyano, T., Kodera, C., Horisawa-Takada, Y., Matsuyama, M., Ishiguro, K.I., Ikawa, M., 2021. KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet. 17, e1009412
|
Page, J., de la Fuente, R., Manterola, M., Parra, M.T., Viera, A., Berrios, S., Fernandez-Donoso, R., Rufas, J.S., 2012. Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma. 121, 307-326
|
Peters, A.H., Plug, A.W., van Vugt, M.J., de Boer, P., 1997. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 5, 66-68
|
Royo, H., Polikiewicz, G., Mahadevaiah, S.K., Prosser, H., Mitchell, M., Bradley, A., de Rooij, D.G., Burgoyne, P.S., Turner, J.M., 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20, 2117-2123
|
Schmekel, K., Daneholt, B., 1995. The central region of the synaptonemal complex revealed in three dimensions. Trends Cell Biol. 5, 239-242
|
Shi, B., Xue, J., Zhou, J., Kasowitz, S.D., Zhang, Y., Liang, G., Guan, Y., Shi, Q., Liu, M., Sha, J., et al., 2018. MORC2B is essential for meiotic progression and fertility. PLoS Genet. 14, e1007175
|
Shinohara, A., Ogawa, H., Ogawa, T., 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 69, 457-470
|
Tarsounas, M., Morita, T., Pearlman, R.E., Moens, P.B., 1999. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147, 207-220
|
Turner, J.M., 2007. Meiotic sex chromosome inactivation. Development. 134, 1823-1831
|
Vernet, N., Mahadevaiah, S.K., de Rooij, D.G., Burgoyne, P.S., Ellis, P.J.I., 2016. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum. Mol. Genet. 25, 5300-5310
|
Yin, H., Kang, Z., Zhang, Y., Gong, Y., Liu, M., Xue, Y., He, W., Wang, Y., Zhang, S., Xu, Q., et al., 2021. HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Res. 49, 5106-5123
|
Yoshida, K., Kondoh, G., Matsuda, Y., Habu, T., Nishimune, Y., Morita, T., 1998. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell. 1, 707-718
|
Zickler, D., Kleckner, N., 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603-754
|