5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Loss-of-function of KMT5B leads to neurodevelopmental disorder and impairs neuronal development and neurogenesis

doi: 10.1016/j.jgg.2022.03.004
Funds:

We are grateful to all the families at the participating Autism Clinical and Genetic Resources in China (ACGC). This work was supported by the National Natural Science Foundation of China (81871079, 81730036, 82130043), the National Brain Science and Brain-like Research of China (2021ZD0201704), the National Key Research and Development Program of China (2021YFA0805200), the Hunan Provincial grands (2021JJ10070, 2019SK1015, 2019RS2005, 2019SK1010, B2019138) and the High Performance Computing Center of Central South University.

  • Received Date: 2021-10-18
  • Accepted Date: 2022-03-06
  • Rev Recd Date: 2022-03-04
  • Publish Date: 2022-03-21
  • Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that cause severe social, communication, and behavioral problems. Recent studies show that the variants of a histone methyltransferase gene KMT5B cause neurodevelopmental disorders (NDDs), including ASD, and the knockout of Kmt5b in mice is embryonic lethal. However, the detailed genotype-phenotype correlations and functional effects of KMT5B in neurodevelopment are unclear. By targeted sequencing of a large Chinese ASD cohort, analyzing published genome-wide sequencing data, and mining literature, we curated 39 KMT5B variants identified from NDD individuals. A genotype-phenotype correlation analysis for 10 individuals with KMT5B pathogenic variants reveals common symptoms, including ASD, intellectual disability, languages problem, and macrocephaly. In vitro knockdown of the expression of Kmt5b in cultured mouse primary cortical neurons leads to a decrease in neuronal dendritic complexity and an increase in dendritic spine density, which can be rescued by expression of human KMT5B but not that of pathogenic de novo missense mutants. In vivo knockdown of the Kmt5b expression in the mouse embryonic cerebral cortex by in utero electroporation results in decreased proliferation and accelerated migration of neural progenitor cells. Our findings reveal essential roles of histone methyltransferase KMT5B in neuronal development, prenatal neurogenesis, and neuronal migration.
  • loading
  • Accogli, A., Calabretta, S., St-Onge, J., Boudrahem-Addour, N., Dionne-Laporte, A., Joset, P., Azzarello-Burri, S., Rauch, A., Krier, J., Fieg, E., et al., 2019. De novo pathogenic variants in n-cadherin cause a syndromic neurodevelopmental disorder with corpus collosum, axon, cardiac, ocular, and genital defects. Am. J. Hum. Genet. 105, 854-868.
    Bagni, C.,Zukin, R.S., 2019. A synaptic perspective of fragile x syndrome and autism spectrum disorders. Neuron. 101, 1070-1088.
    Barnes, A.P.,Polleux, F., 2009. Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347-381.
    Behesti, H., Fore, T.R., Wu, P., Horn, Z., Leppert, M., Hull, C.,Hatten, M.E., 2018. Astn2 modulates synaptic strength by trafficking and degradation of surface proteins. Proc. Natl. Acad. Sci. U. S. A. 115, E9717-E9726.
    Botuyan, M.V., Lee, J., Ward, I.M., Kim, J.E., Thompson, J.R., Chen, J.,Mer, G., 2006. Structural basis for the methylation state-specific recognition of histone h4-k20 by 53bp1 and crb2 in DNA repair. Cell. 127, 1361-1373.
    Ciptasari, U.,van Bokhoven, H., 2020. The phenomenal epigenome in neurodevelopmental disorders. Hum. Mol. Genet. 29, R42-R50.
    Coe, B.P., Stessman, H.A.F., Sulovari, A., Geisheker, M.R., Bakken, T.E., Lake, A.M., Dougherty, J.D., Lein, E.S., Hormozdiari, F., Bernier, R.A., et al., 2019. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 51, 106-116.
    de Jong, J.O., Llapashtica, C., Genestine, M., Strauss, K., Provenzano, F., Sun, Y., Zhu, H., Cortese, G.P., Brundu, F., Brigatti, K.W., et al., 2021. Cortical overgrowth in a preclinical forebrain organoid model of cntnap2-associated autism spectrum disorder. Nat. Commun. 12, 4087.
    De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al., 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 515, 209-215.
    Dennis, G., Jr, Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C.,Lempicki, R.A., 2003. David:database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3.
    Geschwind, D.H.,State, M.W., 2015. Gene hunting in autism spectrum disorder:on the path to precision medicine. Lancet Neurol. 14, 1109-1120.
    Gilbert, J.,Man, H.Y., 2017. Fundamental elements in autism:from neurogenesis and neurite growth to synaptic plasticity. Front. Cell. Neurosci. 11, 359.
    Guo, H., Wang, T., Wu, H., Long, M., Coe, B.P., Li, H., Xun, G., Ou, J., Chen, B., Duan, G., et al., 2018. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism. 9, 64.
    Homberg, J.R., Kyzar, E.J., Nguyen, M., Norton, W.H., Pittman, J., Poudel, M.K., Gaikwad, S., Nakamura, S., Koshiba, M., Yamanouchi, H., et al., 2016. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci. Biobehav. Rev. 65, 292-312.
    Huang, E.J.,Reichardt, L.F., 2001. Neurotrophins:roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736.
    Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al., 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 515, 216-221.
    Jorgensen, S., Schotta, G.,Sorensen, C.S., 2013. Histone h4 lysine 20 methylation:Key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 41, 2797-2806.
    Kaplanis, J., Samocha, K.E., Wiel, L., Zhang, Z., Arvai, K.J., Eberhardt, R.Y., Gallone, G., Lelieveld, S.H., Martin, H.C., McRae, J.F., et al., 2020. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 586, 757-762.
    Kwan, K.Y., Sestan, N.,Anton, E.S., 2012. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535-1546.
    Lai, M.C.,Baron-Cohen, S., 2015. Identifying the lost generation of adults with autism spectrum conditions. Lancet Psychiatr. 2, 1013-1027.
    Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al., 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445, 168-176.
    Li, L., Ruan, X., Wen, C., Chen, P., Liu, W., Zhu, L., Xiang, P., Zhang, X., Wei, Q., Hou, L., et al., 2019. The compass family protein ash2l mediates corticogenesis via transcriptional regulation of wnt signaling. Cell Rep. 28, 698-711 e695.
    Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J., Aiona, K., et al., 2014. Transcriptional landscape of the prenatal human brain. Nature. 508, 199-206.
    Morandell, J., Schwarz, L.A., Basilico, B., Tasciyan, S., Dimchev, G., Nicolas, A., Sommer, C., Kreuzinger, C., Dotter, C.P., Knaus, L.S., et al., 2021. Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nat. Commun. 12, 3058.
    Paquin, K.L.,Howlett, N.G., 2018. Understanding the histone DNA repair code:H4k20me2 makes its mark. Mol. Cancer Res. 16, 1335-1345.
    Parenti, I., Rabaneda, L.G., Schoen, H.,Novarino, G., 2020. Neurodevelopmental disorders:from genetics to functional pathways. Trends Neurosci. 43, 608-621.
    Rylaarsdam, L.,Guemez-Gamboa, A., 2019. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13, 385.
    Sahin, M.,Sur, M., 2015. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 350.
    Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.Y., Peng, M., Collins, R., Grove, J., Klei, L., et al., 2020. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 180, 568-584 e523.
    Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D.,Jenuwein, T., 2004. A silencing pathway to induce h3-k9 and h4-k20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251-1262.
    Schotta, G., Sengupta, R., Kubicek, S., Malin, S., Kauer, M., Callen, E., Celeste, A., Pagani, M., Opravil, S., De La Rosa-Velazquez, I.A., et al., 2008. A chromatin-wide transition to h4k20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 22, 2048-2061.
    Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., et al., 2017. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515-526.
    Trinh, J., Kandaswamy, K.K., Werber, M., Weiss, M.E.R., Oprea, G., Kishore, S., Lohmann, K.,Rolfs, A., 2019. Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J. Neurodev. Disord. 11, 11.
    von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A.,Bork, P., 2005. String:known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433-D437.
    Wang, Z.J., Rein, B., Zhong, P., Williams, J., Cao, Q., Yang, F., Zhang, F., Ma, K.,Yan, Z., 2021b. Autism risk gene kmt5b deficiency in prefrontal cortex induces synaptic dysfunction and social deficits via alterations of DNA repair and gene transcription. Neuropsychopharmacology. 46, 1617-1626.
    Wang, Z.J., Zhong, P., Ma, K., Seo, J.S., Yang, F., Hu, Z., Zhang, F., Lin, L., Wang, J., Liu, T., et al., 2020. Correction:amelioration of autism-like social deficits by targeting histone methyltransferases ehmt1/2 in shank3-deficient mice. Mol. Psychiatr. 25, 2641.
    Wickramasekara, R.N.,Stessman, H.A.F., 2019. Histone 4 lysine 20 methylation:a case for neurodevelopmental disease. Biology 8.
    Yang, H.,Wang, K., 2015. Genomic variant annotation and prioritization with annovar and wannovar. Nat. Protoc. 10, 1556-1566.
    Zhang, Y., Liu, X., Guo, R., Xu, W., Guo, Q., Hao, C., Ni, X.,Li, W., 2021. Biological implications of genetic variations in autism spectrum disorders from genomics studies. Biosci. Rep. 41.
    Zimmermann, M.,de Lange, T., 2014. 53bp1:pro choice in DNA repair. Trends Cell Biol. 24, 108-117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (441) PDF downloads (61) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return