5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 4
Apr.  2022
Turn off MathJax
Article Contents

Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes

doi: 10.1016/j.jgg.2022.03.002
Funds:

We apologize to the authors whose relevant findings were not cited and discussed here due to space limitation. This work was supported by grants from the Training Program of the Major Research Plan of the National Natural Science Foundation of China (91857110), the National Key Research and Development Programme of China (2018YFA0800403 and 2016YFC1305303), the National Natural Science Foundation of China (81670740), the National Natural Science Fund for Excellent Young Scholars of China (81722012), the Zhejiang Provincial Natural Science Foundation of China (LZ21H070001), the Innovative Institute of Basic Medical Sciences of Zhejiang University, and the Fundamental Research Funds for the Central Universities, the Construction Fund of Medical Key Disciplines of Hangzhou (No. OO20200055), the Hangzhou Science and Technology Bureau (20150733Q13 and ZD20200129), and the support from K.C. Wong Education Foundation.

  • Received Date: 2021-12-08
  • Accepted Date: 2022-03-06
  • Rev Recd Date: 2022-02-23
  • Publish Date: 2022-04-30
  • Type 2 diabetes (T2D) is caused by insulin resistance and insufficient insulin secretion. Evidence has increasingly indicated that pancreatic β-cell dysfunction is the primary determinant of T2D disease progression and remission. High plasticity is an important feature of pancreatic β-cells. During T2D development, pancreatic β-cells undergo dynamic adaptation. Although β-cell death/apoptosis in later-stage T2D is the major cause of β-cell dysfunction, recent studies have revealed that β-cell dedifferentiation and reprogramming, which play critical roles in β-cell functional regulation in the early and middle T2D progression stages, are characterized by (i) a loss of mature β-cell-enriched genes; (ii) dedifferentiation to a progenitor-like state; and (iii) transdifferentiation into other cell types. The roles of transcription factors (TFs) in the establishment and maintenance of β-cell identity during pancreatic development have been extensively studied. Here, we summarize the roles and underlying mechanisms of TFs in the maintenance of β-cell identity under physiological and type 2 diabetic conditions. Several feasible approaches for restoring islet functions are also discussed. A better understanding of the transcriptional control of β-cell identity and plasticity will pave the way for developing more effective strategies, such as β-cell regeneration therapy, to treat T2D and associated metabolic disorders.
  • loading
  • Ackermann, A.M., Wang, Z., Schug, J., Naji, A.,Kaestner, K.H., 2016. Integration of atac-seq and rna-seq identifies human alpha cell and beta cell signature genes. Mol. Metab., 5, 233-244
    Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K.,Edlund, H., 1998. Beta-cell-specific inactivation of the mouse ipf1/pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Gene. Dev., 12, 1763-1768
    Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T.,Edlund, H., 1997. Independent requirement for isl1 in formation of pancreatic mesenchyme and islet cells. Nature, 385, 257-260
    Akerman, I., Tu, Z., Beucher, A., Rolando, D.M.Y., Sauty-Colace, C., Benazra, M., Nakic, N., Yang, J., Wang, H., Pasquali, L., et al., 2017. Human pancreatic beta cell lncrnas control cell-specific regulatory networks. Cell Metab., 25, 400-411
    Anderson, K.R., Torres, C.A., Solomon, K., Becker, T.C., Newgard, C.B., Wright, C.V., Hagman, J.,Sussel, L., 2009. Cooperative transcriptional regulation of the essential pancreatic islet gene neurod1 (beta2) by nkx2.2 and neurogenin 3. J. Biol. Chem., 284, 31236-31248
    Apelqvist, A., Li, H., Sommer, L., Beatus, P., Anderson, D.J., Honjo, T., de Angelis, M.H., Lendahl, U.,Edlund, H., 1999. Notch signalling controls pancreatic cell differentiation. Nature, 400, 877-881
    Arnes, L., Akerman, I., Balderes, D.A., Ferrer, J.,Sussel, L., 2016. Beta linc1 encodes a long noncoding rna that regulates islet beta-cell formation and function. Gene. Dev., 30, 502-507
    Arnes, L., Leclerc, K., Friel, J.M., Hipkens, S.B., Magnuson, M.A.,Sussel, L., 2012. Generation of nkx2.2:Lacz mice using recombination-mediated cassette exchange technology. Genesis, 50, 612-624
    Ashery-Padan, R., Zhou, X.L., Marquardt, T., Herrera, P., Toube, L., Berry, A.,Gruss, P., 2004. Conditional inactivation of pax6 in the pancreas causes early onset of diabetes. Developmental Biology 269, 479-488
    Auerbach, A., Cohen, A., Shlomai, N.O., Weinberg-Shukron, A., Gulsuner, S., King, M.C., Hemi, R., Levy-Lahad, E., Abulibdeh, A.,Zangen, D., 2020. Nkx2-2 mutation causes congenital diabetes and infantile obesity with paradoxical glucose-induced ghrelin secretion. J. Clin. Endocr. Metab., 105
    Banga, A., Akinci, E., Greder, L.V., Dutton, J.R.,Slack, J.M.W., 2012. In vivo reprogramming of sox9+ cells in the liver to insulin-secreting ducts. P. Natl. Acad. Sci. U. S. A., 109, 15336-15341
    Banga, A., Greder, L.V., Dutton, J.R.,Slack, J.M.W., 2014. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a ppar agonist. Gene. Ther., 21, 19-27
    Benner, C., van der Meulen, T., Caceres, E., Tigyi, K., Donaldson, C.J.,Huising, M.O., 2014. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding rna and protein-coding gene expression. Bmc. Genomics, 15
    Bethea, M., Liu, Y.P., Wade, A.K., Mullen, R., Gupta, R., Gelfanov, V., DiMarchi, R., Bhatnagar, S., Behringer, R., Habegger, K.M., et al., 2019. The islet-expressed lhx1 transcription factor interacts with islet-1 and contributes to glucose homeostasis. Am. J. Physiol-Endoc. M., 316, E397-E409
    Bohuslavova, R., Smolik, O., Malfatti, J., Berkova, Z., Novakova, Z., Saudek, F.,Pavlinkova, G., 2021. Neurod1 is required for the early alpha and beta endocrine differentiation in the pancreas. Int. J. Mol. Sci., 22
    Boyer, D.F., Fujitani, Y., Gannon, M., Powers, A.C., Stein, R.W.,Wright, C.V.E., 2006. Complementation rescue of pdx1 null phenotype demonstrates distinct roles of proximal and distal cis-regulatory sequences in pancreatic and duodenal expression. Developmental Biology, 298, 616-631
    Burtscher, I., Barkey, W.,Lickert, H., 2013. Foxa2-venus fusion reporter mouse line allows live-cell analysis of endoderm-derived organ formation. Genesis, 51, 596-604
    Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A.,Butler, P.C., 2003. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102-110
    Cerf, M.E., Chapman, C.S., Muller, C.J.,Louw, J., 2009. Gestational high-fat programming impairs insulin release and reduces pdx-1 and glucokinase immunoreactivity in neonatal wistar rats. Metabolism, 58, 1787-1792
    Chen, F., Zhu, Y.X., Tang, X.Y., Sun, Y.D., Jia, W.P., Sun, Y.J.,Han, X., 2011. Dynamic regulation of pdx-1 and foxo1 expression by foxa2 in dexamethasone-induced pancreatic beta-cells dysfunction. Endocrinology, 152, 1779-1788
    Chin-Chance, C.V.T., Newman, M.V., Aronovitz, A., Blomeier, H., Kruger, J., Lee, E.J.,Lowe, W.L., 2006. Role of the mitogen-activated protein kinases in cytokine-mediated inhibition of insulin gene expression. J. Invest. Med., 54, 132-142
    Cho, Y.S., Chen, C.H., Hu, C., Long, J.R., Ong, R.T.H., Sim, X.L., Takeuchi, F., Wu, Y., Go, M.J., Yamauchi, T., et al., 2012. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east asians. Nat. Genet., 44, 67-U97
    Cim, A., Sawyer, G.J., Zhang, X.H., Su, H.B., Collins, L., Jones, P., Antoniou, M., Reynes, J.P., Lipps, H.J.,Fabre, J.W., 2012. In vivo studies on non-viral transdifferentiation of liver cells towards pancreatic beta cells. J. Endocrinol., 214, 277-288
    Cinti, F., Bouchi, R., Kim-Muller, J.Y., Ohmura, Y., Sandoval, P.R., Masini, M., Marselli, L., Suleiman, M., Ratner, L.E., Marchetti, P., et al., 2016. Evidence of beta-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab., 101, 1044-1054
    Collombat, P., Hecksher-Sorensen, J., Broccoli, V., Krull, J., Ponte, I., Mundiger, T., Smith, J., Gruss, P., Serup, P.,Mansouri, A., 2005. The simultaneous loss of arx and pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development, 132, 2969-2980
    Collombat, P., Hecksher-Sorensen, J., Krull, J., Berger, J., Riedel, D., Herrera, P.L., Serup, P.,Mansouri, A., 2007. Embryonic endocrine pancreas and mature beta cells acquire alpha and pp cell phenotypes upon arx misexpression. J. Clin. Invest., 117, 961-970
    Collombat, P., Xu, X.B., Ravassard, P., Sosa-Pineda, B., Dussaud, S., Billestrup, N., Madsen, O.D., Serup, P., Heimberg, H.,Mansouri, A., 2009. The ectopic expression of pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell, 138, 449-462
    Courtney, M., Gjernes, E., Druelle, N., Ravaud, C., Vieira, A., Ben-Othman, N., Pfeifer, A., Avolio, F., Leuckx, G., Lacas-Gervais, S., et al., 2013. The inactivation of arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells. Plos Genet., 9
    Cyphert, H.A., Walker, E.M., Hang, Y., Dhawan, S., Haliyur, R., Bonatakis, L., Avrahami, D., Brissova, M., Kaestner, K.H., Bhushan, A., et al., 2019. Examining how the mafb transcription factor affects islet -cell function postnatally. Diabetes, 68, 337-348
    Dassaye, R., Naidoo, S.,Cerf, M.E., 2016. Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets, 8, 13-34
    Donath, M.Y.,Shoelson, S.E., 2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 11, 98-107
    Ediger, B.N., Lim, H.W., Juliana, C., Groff, D.N., Williams, L.T., Dominguez, G., Liu, J.H., Taylor, B.L., Walp, E.R., Kameswaran, V., et al., 2017. Lim domain-binding 1 maintains the terminally differentiated state of pancreatic beta cells. J. Clin. Invest., 127, 215-229
    Eliasson, L.,Esguerra, J.L.S., 2020. Microrna networks in pancreatic islet cells: Normal function and type 2 diabetes. Diabetes, 69, 804-812
    Elsayed, A.K., Younis, I., Ali, G., Hussain, K.,Abdelalim, E.M., 2021. Aberrant development of pancreatic beta cells derived from human ipscs with foxa2 deficiency. Cell Death Dis., 12
    Ferber, S., Halkin, A., Cohen, H., Ber, I., Einav, Y., Goldberg, I., Barshack, I., Seijffers, R., Kopolovic, J., Kaiser, N., et al., 2000. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med., 6, 568-572
    Friedman-Mazursky, O., Elkon, R., Efrat, S., 2016. Redifferentiation of expanded human islet β cells by inhibition of ARX. Sci. Rep. 6, 20698
    Fujitani, Y., Fujitani, S., Boyer, D.F., Gannon, M., Kawaguchi, Y., Ray, M., Shiota, M., Stein, R.W., Magnuson, M.A.,Wright, C.V.E., 2006. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for pdx1 in foregut organ differentiation and pancreas formation. Gene Dev., 20, 253-266
    Furuyama, K., Chera, S., van Gurp, L., Oropeza, D., Ghila, L., Damond, N., Vethe, H., Paulo, J.A., Joosten, A.M., Berney, T., et al., 2019. Diabetes relief in mice by glucose-sensing insulin-secreting human alpha-cells. Nature, 567, 43-48
    Gannon, M., Ables, E.T., Crawford, L., Lowe, D., Offield, M.F., Magnuson, M.A.,Wright, C.V.E., 2008. Pdx-1 function is specifically required in embryonic cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Developmental Biology, 314, 406-417
    Gao, N., Lelay, J., Vatamaniuk, M.Z., Rieck, S., Friedman, J.R.,Kaestner, K.H., 2008. Dynamic regulation of pdx1 enhancers by foxa1 and foxa2 is essential for pancreas development. Gene Dev., 22, 3435-3448
    Gao, N., White, P., Doliba, N., Golson, M.L., Matschinsky, F.M.,Kaestner, K.H., 2007. Foxa2 controls vesicle docking and insulin secretion in mature beta cells. Cell Metabolism, 6, 267-279
    Gao, T., McKenna, B., Li, C., Reichert, M., Nguyen, J., Singh, T., Yang, C., Pannikar, A., Doliba, N., Zhang, T., et al., 2014. Pdx1 maintains beta cell identity and function by repressing an alpha cell program. Cell Metab., 19, 259-271
    Gaulton, K.J., Ferreira, T., Lee, Y., Raimondo, A., Maegi, R., Reschen, M.E., Mahajan, A., Locke, A., Rayner, N.W., Robertson, N., et al., 2015. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet., 47, 1415
    Gaulton, K.J., Nammo, T., Pasquali, L., Simon, J.M., Giresi, P.G., Fogarty, M.P., Panhuis, T.M., Mieczkowski, P., Secchi, A., Bosco, D., et al., 2010. A map of open chromatin in human pancreatic islets. Nat. Genet., 42, 255-259
    Georgia, S., Kanji, M.,Bhushan, A., 2013. Dnmt1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev., 27, 372-377
    Gerrish, K., Cissell, A.A.,Stein, R., 2001. The role of hepatic nuclear factor 1 alpha and pdx-1 in transcriptional regulation of the pdx-1 gene. J. Biol. Chem., 276, 47775-47784
    Gerrish, K., Grannon, M., Shih, D., Henderson, E., Stoffel, M., Wright, C.V.E.,Stein, R., 2000. Pancreatic beta cell-specific transcription of the pdx-1 gene - the role of conserved upstream control regions and their hepatic nuclear factor 3 beta sites. J. Biol. Chem., 275, 3485-3492
    Gradwohl, G., Dierich, A., LeMeur, M.,Guillemot, F., 2000. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. P. Natl. Acad. Sci. U. S. A., 97, 1607-1611
    Gragnoli, C., Stanojevic, V., Gorini, A., Von Preussenthal, G.M., Thomas, M.K.,Habener, J.F., 2005. Ipf-1/mody4 gene missense mutation in an italian family with type 2 and gestational diabetes. Metabolism, 54, 983-988
    Gribben, C., Lambert, C., Messal, H.A., Hubber, E.L., Rackham, C., Evans, I., Heimberg, H., Jones, P., Sancho, R.,Behrens, A., 2021. Ductal ngn3-expressing progenitors contribute to adult beta cell neogenesis in the pancreas. Cell Stem Cell, 28, 2000
    Gu, G.Q., Dubauskaite, J.,Melton, D.A., 2002. Direct evidence for the pancreatic lineage: Ngn3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129, 2447-2457
    Guo, S.L., Dai, C.H., Guo, M., Taylor, B., Harmon, J.S., Sander, M., Robertson, R.P., Powers, A.C.,Stein, R., 2013. Inactivation of specific beta cell transcription factors in type 2 diabetes. J. Clin. Invest., 123, 3305-3316
    Gutierrez, G.D., Bender, A.S., Cirulli, V., Mastracci, T.L., Kelly, S.M., Tsirigos, A., Kaestner, K.H.,Sussel, L., 2017. Pancreatic beta cell identity requires continual repression of non-beta cell programs. J. Clin. Invest., 127, 244-259
    Hang, Y., Yamamoto, T., Benninger, R.K.P., Brissova, M., Guo, M., Bush, W., Piston, D.W., Powers, A.C., Magnuson, M., Thurmond, D.C., et al., 2014. The mafa transcription factor becomes essential to islet beta-cells soon after birth. Diabetes, 63, 1994-2005
    Harmon, J.S., Stein, R.,Robertson, R.P., 2005. Oxidative stress-mediated, post-translational loss of mafa protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem., 280, 11107-11113
    Haumaitre, C., Lenoir, O.,Scharfmann, R., 2008. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell Biol., 28, 6373-6383
    Kataoka, K., Han, S.I., Shioda, S., Hirai, M., Nishizawa, M.,Handa, H., 2002. Mafa is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J. Biol. Chem., 277, 49903-49910
    Kitakaze, K., Oyadomari, M., Zhang, J., Hamada, Y., Takenouchi, Y., Tsuboi, K., Inagaki, M., Tachikawa, M., Fujitani, Y., Okamoto, Y., et al., 2021. Atf4-mediated transcriptional regulation protects against -cell loss during endoplasmic reticulum stress in a mouse model. Mol. Metab., 54
    Kitamura, Y.I., Kitamura, T., Kruse, J.P., Raum, J.C., Stein, R., Gu, W., Accili, D., 2005. Foxo1 protects against pancreatic beta cell failure through neurod and mafa induction. Cell Metab. 2, 153–163
    Kjorholt, C., Akerfeldt, M.C., Biden, T.J.,Laybutt, D.R., 2005. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes, 54, 2755-2763
    Le Lay, J., Matsuoka, T.A., Henderson, E.,Stein, R., 2004. Identification of a novel pdx-1 binding site in the human insulin gene enhancer. J. Biol. Chem., 279, 22228-22235
    Lee, K., Cho, H., Rickert, R.W., Li, Q.V., Pulecio, J., Leslie, C.S.,Huangfu, D.W., 2019. Foxa2 is required for enhancer priming during pancreatic differentiation. Cell Rep., 28, 382
    Lee, Y.S., Lee, C., Choung, J.S., Jung, H.S.,Jun, H.S., 2018. Glucagon-like peptide 1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation. Diabetes, 67, 2601-2614
    Lenz, A., Toren-Haritan, G.,Efrat, S., 2014. Redifferentiation of adult human beta cells expanded in vitro by inhibition of the wnt pathway. Plos One, 9
    Li, W.D., Nakanishi, M., Zumsteg, A., Shear, M., Wright, C., Melton, D.A.,Zhou, Q., 2014. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife, 3
    Lien, Y.C., Lu, X.M., Won, K.J., Wang, P.Z.P., Osei-Bonsu, W.,Simmons, R.A., 2021. The transcriptome and epigenome reveal novel changes in transcription regulation during pancreatic rat islet maturation. Endocrinology, 162
    Liu, T., Sun, P., Zou, J., Wang, L., Wang, G., Liu, N., Liu, Y., Ding, X., Zhang, B., Liang, R., et al., 2021. Increased frequency of beta cells with abnormal nkx6.1 expression in type 2 diabetes but not in subjects with higher risk for type 2 diabetes. BMC. Endocr. Disord., 21, 47
    Liu, Y.P., Kepple, J.D., Shalev, A.,Hunter, C.S., 2022. Ldb1-mediated transcriptional complexes are sensitive to islet stress. Islets, 14, 58-68
    Losada, M.L., Pauler, M., Vandamme, N., Goossens, S., Berx, G., Leppkes, M., Schuhwerk, H., Brabletz, S., Brabletz, T.,Stemmler, M.P., 2021. Pancreas morphogenesis and homeostasis depends on tightly regulated zeb1 levels in epithelial cells. Cell Death Discov., 7
    Lu, T.T., Heyne, S., Dror, E., Casas, E., Leonhardt, L., Boenke, T., Yang, C.H., Sagar, Arrigoni, L., Dalgaard, K., et al., 2018. The polycomb-dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab., 27, 1294-1308 e1297
    Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D.,German, M.S., 2007. Microrna expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56, 2938-2945
    Ma, R.C.W., Hu, C., Tam, C.H., Zhang, R., Kwan, P., Leung, T.F., Thomas, G.N., Go, M.J., Hara, K., Sim, X., et al., 2013. Genome-wide association study in a chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near pax4. Diabetologia 56, 1291-1305
    Macfarlane, W.M., Frayling, T.M., Ellard, S., Evans, J.C., Allen, L.I.S., Bulman, M.P., Ayers, S., Shepherd, M., Clark, P., Millward, A., et al., 2000. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J. Clin. Invest., 106, 717-717
    Matsuoka, T., Kawashima, S., Miyatsuka, T., Sasaki, S., Shimo, N., Katakami, N., Kawamori, D., Takebe, S., Herrera, P.L., Kaneto, H., et al., 2017. Mafa enables pdx1 to effectively convert pancreatic islet progenitors and committed islet -cells into -cells in vivo. Diabetes, 66, 1293-1300
    McKenna, B., Guo, M., Reynolds, A., Hara, M.,Stein, R., 2015. Dynamic recruitment of functionally distinct swi/snf chromatin remodeling complexes modulates pdx1 activity in islet beta cells. Cell Rep., 10, 2032-2042
    Meier, J.J.,Bonadonna, R.C., 2013. Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 36 Suppl 2, S113-119
    Melkman-Zehavi, T., Oren, R., Kredo-Russo, S., Shapira, T., Mandelbaum, A.D., Rivkin, N., Nir, T., Lennox, K.A., Behlke, M.A., Dor, Y., et al., 2011. Mirnas control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. Embo. J., 30, 835-845
    Melloul, D., Marshak, S.,Cerasi, E., 2002. Regulation of insulin gene transcription. Diabetologia, 45, 309-326
    Motoda, S., Fujita, S., Kozawa, J., Kimura, T., Fukui, K., Ikuno, Y., Imagawa, A., Iwahashi, H.,Shimomura, I., 2019. Case of a novel pax6 mutation with aniridia and insulin-dependent diabetes mellitus. J. Diabetes Invest., 10, 552-553
    Nagashima, T., Shigematsu, N., Maruki, R., Urano, Y., Tanaka, H., Shimaya, A., Shimokawa, T.,Shibasaki, M., 2010. Discovery of novel forkhead box o1 inhibitors for treating type 2 diabetes: Improvement of fasting glycemia in diabetic db/db mice. Mol. Pharmacol., 78, 961-970
    Naya, F.J., Huang, H.P., Qiu, Y., Mutoh, H., DeMayo, F.J., Leiter, A.B.,Tsai, M.J., 1997. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in beta2/neurod-deficient mice. Genes Dev., 11, 2323-2334
    Nishimura, W., Kondo, T., Salameh, T., El Khattabi, I., Dodge, R., Bonner-Weir, S.,Sharma, A., 2006. A switch from mafb to mafa expression accompanies differentiation to pancreatic beta-cells. Developmental Biology, 293, 526-539
    Nishimura, W., Takahashi, S.,Yasuda, K., 2015. Mafa is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia, 58, 566-574
    Nordmann, T.M., Dror, E., Schulze, F., Traub, S., Berishvili, E., Barbieux, C., Boni-Schnetzler, M.,Donath, M.Y., 2017. The role of inflammation in beta-cell dedifferentiation. Sci Rep-Uk., 7
    Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., Stein, R.W., Magnuson, M.A., Hogan, B.L.,Wright, C.V., 1996. Pdx-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development, 122, 983-995
    Ohlsson, H., Karlsson, K.,Edlund, T., 1993. Ipf1, a homeodomain-containing transactivator of the insulin gene. Embo. J., 12, 4251-4259
    Ono, Y.,Kataoka, K., 2021. Mafa, neurod1 and hnf1 beta synergistically activate the slc2a2 (glut2) gene in beta-cells. J. Mol. Endocrinol., 67, 71-82
    Oster, A., Jensen, J., Edlund, H.,Larsson, L.I., 1998. Homeobox gene product nkx 6.1 immunoreactivity in nuclei of endocrine cells of rat and mouse stomach. J. Histochem. Cytochem., 46, 717-721
    Parajuli, K.R., Zhang, Y.Q., Cao, A.M., Wang, H.J., Fonseca, V.A.,Wu, H.J., 2020. Pax4 gene delivery improves islet transplantation efficacy by promoting beta cell survival and alpha-to-beta cell transdifferentiation. Cell Transplant., 29
    Pictet, R.L., Clark, W.R., Williams, R.H.,Rutter, W.J., 1972. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol., 29, 436-467
    Qiao, J., Zhang, Z., Ji, S., Liu, T., Zhang, X., Huang, Y., Feng, W., Wang, K., Wang, J., Wang, S., et al., 2022. A distinct role of sting in regulating glucose homeostasis through insulin sensitivity and insulin secretion. P. Natl. Acad. Sci. U. S. A., 119, e2101848119
    Ramos-Rodriguez, M., Raurell-Vila, H., Colli, M.L., Alvelos, M.I., Subirana-Granes, M., Juan-Mateu, J., Norris, R., Turatsinze, J.V., Nakayasu, E.S., Webb-Robertson, B.M., et al., 2019. The impact of proinflammatory cytokines on the beta-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat. Genet., 51, 1588-1595
    Rubio-Cabezas, O., Minton, J.A., Kantor, I., Williams, D., Ellard, S.,Hattersley, A.T., 2010. Homozygous mutations in neurod1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes, 59, 2326-2331
    Russ, H.A., Sintov, E., Anker-Kitai, L., Friedman, O., Lenz, A., Toren, G., Farhy, C., Pasmanik-Chor, M., Oron-Karni, V., Ravassard, P., et al., 2011. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. Plos One, 6
    Sacco, F., Seelig, A., Humphrey, S.J., Krahmer, N., Volta, F., Reggio, A., Marchetti, P., Gerdes, J.,Mann, M., 2019. Phosphoproteomics reveals the gsk3-pdx1 axis as a key pathogenic signaling node in diabetic islets. Cell Metabolism, 29, 1422
    Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J., Dela Cruz, F., Schwitzgebel, V., Hayes-Jordan, A.,German, M., 2000. Homeobox gene nkx6.1 lies downstream of nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development, 127, 5533-5540
    Saxena, P., Heng, B.C., Bai, P., Folcher, M., Zulewski, H.,Fussenegger, M., 2016. A programmable synthetic lineage-control network that differentiates human ipscs into glucose-sensitive insulin-secreting beta-like cells. Nature Communications, 7
    Schaffer, A.E., Taylor, B.L., Benthuysen, J.R., Liu, J.X., Thorel, F., Yuan, W.P., Jiao, Y., Kaestner, K.H., Herrera, P.L., Magnuson, M.A., et al., 2013. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic beta cell identity. Plos Genet., 9
    Schaschkow, A., Pang, L., Vandenbempt, V., Elvira, B., Litwak, S.A., Vekeriotaite, B., Maillard, E., Vermeersch, M., Paula, F.M.M., Pinget, M., et al., 2021. Stat3 regulates mitochondrial gene expression in pancreatic beta-cells and its deficiency induces glucose intolerance in obesity. Diabetes, 70, 2026-2041
    Schisler, J.C., Jensen, P.B., Taylor, D.G., Becker, T.C., Knop, F.K., Takekawa, S., German, M., Weir, G.C., Lu, D., Mirmira, R.G., et al., 2005. The nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. P. Natl. Acad. Sci. U. S. A., 102, 7297-7302
    Scoville, D.W., Lichti-Kaiser, K., Grimm, S.A.,Jetten, A.M., 2019. Glis3 binds pancreatic beta cell regulatory regions alongside other islet transcription factors. J. Endocrinol., 243, 1-14
    Shim, J.H., Kim, J.H., Han, J.Y., An, S.Y., Jang, Y.J., Son, J.S., Woo, D.H., Kim, S.K.,Kim, J.H., 2015. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice. Cell Transplant., 24, 2155-2168
    Shimajiri, Y., Sanke, T., Furuta, H., Hanabusa, T., Nakagawa, T., Fujitani, Y., Kajimoto, Y., Takasu, N.,Nanjo, K., 2001. A missense mutation of pax4 gene (r121w) is associated with type 2 diabetes in japanese. Diabetes, 50, 2864-2869
    Shimomura, H., Sanke, T., Hanabusa, T., Tsunoda, K., Furuta, H.,Nanjo, K., 2000. Nonsense mutation of islet-1 gene (q310x) found in a type 2 diabetic patient with a strong family history. Diabetes, 49, 1597-1600
    Shrestha, S., Saunders, D.C., Walker, J.T., Camunas-Soler, J., Dai, X.Q., Haliyur, R., Aramandla, R., Poffenberger, G., Prasad, N., Bottino, R., et al., 2021. Combinatorial transcription factor profiles predict mature and functional human islet alpha and beta cells. Jci. Insight, 6
    Sintov, E., Nathan, G., Knoller, S., Pasmanik-Chor, M., Russ, H.A.,Efrat, S., 2015. Inhibition of zeb1 expression induces redifferentiation of adult human beta cells expanded in vitro. Sci Rep-Uk., 5
    So, Y., Liu, W.N., Teo, A.K.K., Rutter, G.A.,Han, W.P., 2021. Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Sci. Transl. Med., 13
    SosaPineda, B., Chowdhury, K., Torres, M., Oliver, G.,Gruss, P., 1997. The pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature, 386, 399-402
    Spaeth, J.M., Liu, J.H., Peters, D., Guo, M., Osipovich, A.B., Mohammadi, F., Roy, N., Bhushan, A., Magnuson, M.A., Hebrok, M., et al., 2019. The pdx1-bound swi/snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet beta-cell function. Diabetes, 68, 1806-1818
    StOnge, L., SosaPineda, B., Chowdhury, K., Mansouri, A.,Gruss, P., 1997. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature, 387, 406-409
    Sussel, L., Kalamaras, J., Hartigan-O'Connor, D.J., Meneses, J.J., Pedersen, R.A., Rubenstein, J.L.R.,German, M.S., 1998. Mice lacking the homeodomain transcription factor nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 125, 2213-2221
    Swisa, A., Avrahami, D., Eden, N., Zhang, J., Feleke, E., Dahan, T., Cohen-Tayar, Y., Stolovich-Rain, M., Kaestner, K.H., Glaser, B., et al., 2017. Pax6 maintains beta cell identity by repressing genes of alternative islet cell types. J. Clin. Invest., 127, 230-243
    Talchai, C., Xuan, S., Lin, H.V., Sussel, L.,Accili, D., 2012a. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell. 150, 1223-1234
    Talchai, C., Xuan, S.H., Kitamura, T., DePinho, R.A.,Accili, D., 2012b. Generation of functional insulin-producing cells in the gut by foxo1 ablation. Nat. Genet., 44, 406-U213
    Tanday, N., Flatt, P.R., Irwin, N.,Moffett, R.C., 2020. Liraglutide and sitagliptin counter beta- to alpha-cell transdifferentiation in diabetes. J. Endocrinol., 245, 53-64
    Van Velkinburgh, J.C., Samaras, S.E., Gerrish, K., Artner, I.,Stein, R., 2005. Interactions between areas i and ii direct pdx-1 expression specifically to islet cell types of the mature and developing pancreas. J. Biol. Chem., 280, 38438-38444
    Vanhoose, A.M., Samaras, S., Artner, I., Henderson, E., Hang, Y.,Stein, R., 2008. Mafa and mafb regulate pdx1 transcription through the area ii control region in pancreatic beta cells. J. Biol. Chem., 283, 22612-22619
    Walker, E.M., Cha, J., Tong, X., Guo, M., Liu, J.H., Yu, S., Iacovazzo, D., Mauvais-Jarvis, F., Flanagan, S.E., Korbonits, M., et al., 2021. Sex-biased islet beta cell dysfunction is caused by the mody mafa s64f variant by inducing premature aging and senescence in males. Cell Rep., 37
    Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W.T., Chang, H., Xu, G.L., et al., 2009. The lysine demethylase lsd1 (kdm1) is required for maintenance of global DNA methylation. Nat. Genet., 41, 125-129
    Weng, Q.J., Zhao, M.T., Zheng, J.H., Yang, L.J., Xu, Z.J., Zhang, Z.K., Wang, J.C., Wang, J.J., Yang, B., Lu, Q.R., et al., 2020. Stat3 dictates beta-cell apoptosis by modulating pten in streptozocin-induced hyperglycemia. Cell Death Differ., 27, 130-145
    Wilcox, C.L., Terry, N.A., Walp, E.R., Lee, R.A.,May, C.L., 2013. Pancreatic alpha-cell specific deletion of mouse arx leads to alpha-cell identity loss. Plos One, 8
    Willmann, S.J., Mueller, N.S., Engert, S., Sterr, M., Burtscher, I., Raducanu, A., Irmler, M., Beckers, J., Sass, S., Theis, F.J., et al., 2016. The global gene expression profile of the secondary transition during pancreatic development. Mech. Develop., 139, 51-64
    Xiao, X.W., Guo, P., Shiota, C., Zhang, T., Coudriet, G.M., Fischbach, S., Prasadan, K., Fusco, J., Ramachandran, S., Witkowski, P., et al., 2018. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell, 22, 78
    Xu, C.R., Li, L.C., Donahue, G., Ying, L., Zhang, Y.W., Gadue, P.,Zaret, K.S., 2014. Dynamics of genomic h3k27me3 domains and role of ezh2 during pancreatic endocrine specification. Embo. J., 33, 2157-2170
    Yang, Y.P., Thorel, F., Boyer, D.F., Herrera, P.L.,Wright, C.V.E., 2011. Context-specific alpha-to-beta-cell reprogramming by forced pdx1 expression. Gene Dev., 25, 1680-1685
    Yechoor, V., Liu, V., Espiritu, C., Paul, A., Oka, K., Kojima, H.,Chan, L., 2009. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets, in vivo but not transdifferentiation of hepatocytes. Dev. Cell, 16, 358-373
    Yu, F., Wei, R., Yang, J., Liu, J.L., Yang, K., Wang, H.N., Mu, Y.M.,Hong, T.P., 2018. Foxo1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp. Cell Res., 362, 227-234
    Yu, X.,Zhong, L.Y., 2018. Pioglitazone/microrna-141/foxa2: A novel axis in pancreatic beta-cells proliferation and insulin secretion. Mol. Med. Rep., 17, 7931-7938
    Zhang, C., Moriguchi, T., Kajihara, M., Esaki, R., Harada, A., Shimohata, H., Oishi, H., Hamada, M., Morito, N., Hasegawa, K., et al., 2005. Mafa is a key regulator of glucose-stimulated insulin secretion. Mol. Cell. Biol., 25, 4969-4976
    Zhang, F., Yang, Y., Chen, X., Liu, Y., Hu, Q., Huang, B., Liu, Y., Pan, Y., Zhang, Y., Liu, D., et al., 2021a. The long non-coding rna betafaar regulates islet beta-cell function and survival during obesity in mice. Nat. Commun., 12, 3997
    Zhang, M., Yang, C.J., Zhu, M., Qian, L., Luo, Y., Cheng, H.M., Geng, R., Xu, X.J., Qian, C.,Liu, Y., 2021b. Saturated fatty acids entrap pdx1 in stress granules and impede islet beta cell function. Diabetologia, 64, 1144-1157
    Zhang, T., Kim, D.H., Xiao, X., Lee, S., Gong, Z., Muzumdar, R., Calabuig-Navarro, V., Yamauchi, J., Harashima, H., Wang, R., et al., 2016a. Foxo1 plays an important role in regulating beta-cell compensation for insulin resistance in male mice. Endocrinology, 157, 1055-1070
    Zhang, Y.Q., Fava, G.E., Wang, H.J., Mauvais-Jarvis, F., Fonseca, V.A.,Wu, H.J., 2016b. Pax4 gene transfer induces alpha-to-beta cell phenotypic conversion and confers therapeutic benefits for diabetes treatment. Mol. Ther., 24, 251-260
    Zhou, Q., Law, A.C., Rajagopal, J., Anderson, W.J., Gray, P.A.,Melton, D.A., 2007. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell, 13, 103-114
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return