Alexander, D.H., Novembre, J.,Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664
|
Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H.,Matsuoka, M., 2005. Cytokinin oxidase regulates rice grain production. Science 309, 741-745
|
Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y.,Buckler, E.S., 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635
|
Bruce, A.B., 1910. The Mendelian Theory of Heredity and the Augmentation of Vigor. Science 32, 627-628
|
Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M.,Lee, J.J., 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7
|
Chen, L.,Liu, Y.G., 2014. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579-606
|
Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al., 2021. Twelve years of SAMtools and BCFtools. Gigascience 10
|
East, E.M., 1908. Inbreeding in corn. Rep. Conn. Agric. Exp. Stn. 1907, 419-428
|
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S.,Mitchell, S.E., 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379
|
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X.,Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171
|
Gonda, I., Ashrafi, H., Lyon, D.A., Strickler, S.R., Hulse-Kemp, A.M., Ma, Q., Sun, H., Stoffel, K., Powell, A.F., Futrell, S., et al., 2019. Sequencing-Based Bin Map Construction of a Tomato Mapping Population, Facilitating High-Resolution Quantitative Trait Loci Detection. Plant Genome 12, 180010
|
Hu, Z.J., Lu, S.J., Wang, M.J., He, H.H., Sun, L., Wang, H.R., Liu, X.H., Jiang, L., Sun, J.L., Xin, X.Y., et al., 2018. A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Mol. Plant 11, 736-749
|
Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S.,Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 100, 2574-2579
|
Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., et al., 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629-633
|
Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., et al., 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258
|
Huo, X., Wu, S., Zhu, Z., Liu, F., Fu, Y., Cai, H., Sun, X., Gu, P., Xie, D., Tan, L., et al., 2017. NOG1 increases grain production in rice. Nat. Commun. 8, 1497
|
Jakobsson, M.,Rosenberg, N.A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801-1806
|
Jones, D.F., 1917. Dominance of linked factors as a means of accounting for heterosis. Genetics 2, 466
|
Kosambi, D.D., 1943. The estimation of map distances from recombination values. Ann. Eugen. 12, 172-175
|
Krieger, U., Lippman, Z.B.,Zamir, D., 2010. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459-463
|
Li, D., Huang, Z., Song, S., Xin, Y., Mao, D., Lv, Q., Zhou, M., Tian, D., Tang, M., Wu, Q., et al., 2016. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. U. S. A. 113, E6026-E6035
|
Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760
|
Li, M.X., Yeung, J.M., Cherny, S.S.,Sham, P.C., 2012. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747-756
|
Li, W., Zeng, R., Zhang, Z., Ding, X.,Zhang, G., 2008. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.). Theor. Appl. Genet. 116, 915-922
|
Li, X., Chen, Z., Zhang, G., Lu, H., Qin, P., Qi, M., Yu, Y., Jiao, B., Zhao, X., Gao, Q., et al., 2020. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 63, 1688-1702
|
Liang, Q.Z., Shang, L.G., Wang, Y.M.,Hua, J.P., 2015. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). PLoS One 10, e0143548
|
Lin, T., Zhou, C., Chen, G., Yu, J., Wu, W., Ge, Y., Liu, X., Li, J., Jiang, X., Tang, W., et al., 2020a. Heterosis-associated genes confer high yield in super hybrid rice. Theor. Appl. Genet. 133, 3287-3297
|
Lin, Z., Qin, P., Zhang, X., Fu, C., Deng, H., Fu, X., Huang, Z., Jiang, S., Li, C., Tang, X., et al., 2020b. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc. Natl. Acad. Sci. U. S. A. 117, 4623-4631
|
Lv, C.,Zou, J.-s., 2016. Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Scientia Agricultura Sinica 49, 1635-1645
|
Lv, Q., Li, W., Sun, Z., Ouyang, N., Jing, X., He, Q., Wu, J., Zheng, J., Zheng, J., Tang, S., et al., 2020. Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nat. Commun. 11, 4778
|
Ma, R., Wang, X., Lu, Y., Zhou, H., Cai, K., Li, X.,Zhang, Z., 2010. Breeding and application of late japonica CMS line Yongjing 2A and its late indica-japonica hybrid rice Combinations. Zajiao Shuidao 25, 185-189
|
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303
|
Meng, L., Li, H.H., Zhang, L.Y.,Wang, J.K., 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 3, 269-283
|
Mi, J., Li, G., Huang, J., Yu, H., Zhou, F., Zhang, Q., Ouyang, Y.,Mou, T., 2016. Stacking S5-n and f5-n to overcome sterility in indica-japonica hybrid rice. Theor. Appl. Genet. 129, 563-575
|
Mi, J.M., Lei, Y., Kim, S.R., Prahalada, G.D., Ouyang, Y.D.,Mou, T.M., 2019. An effective strategy for fertility improvement of indica-japonica hybrid rice by pyramiding S5-n, f5-n, and pf12-j. Mol. Breed. 39, 138
|
Minvielle, F., 1987. Dominance Is Not Necessary for Heterosis: a two-Locus Model. Genet. Res. 49, 245-247
|
Moll, R.H., Salhuana, W.,Robinson, H., 1962. Heterosis and genetic diversity in variety crosses of maize. Crop Sci. 2, 197-198
|
Ouyang, Y., 2016. Progress of indica-japonica hybrid sterility and wide-compatibility in rice. Chin. Sci. Bull. 61, 3833-3841
|
Ouyang, Y., Li, G., Mi, J., Xu, C., Du, H., Zhang, C., Xie, W., Li, X., Xiao, J., Song, H., et al., 2016. Origination and Establishment of a Trigenic Reproductive Isolation System in Rice. Mol. Plant 9, 1542-1545
|
Schliep, K.P., 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592-593
|
Schnell, F.W.,Cockerham, C.C., 1992. Multiplicative vs. arbitrary gene action in heterosis. Genetics 131, 461-469
|
Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., et al., 2017. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat. Commun. 8, 1310
|
Shen, X., Chen, S.,Cao, L., 2008. Construction of genetic linkage map based on a RIL population derived from super hybrid rice, XY9308. Molecular Plant Breeding
|
Shull, G.H., 1908. The composition of a field of maize. J. Hered., 296-301
|
Song, X., Lin, J.,Wu, M., 2016. Review and prospect on utilization of heterosis between indica-japonica rice subspecies. Chin. Sci. Bull. 61, 3778-3786
|
Song, X.J., Huang, W., Shi, M., Zhu, M.Z.,Lin, H.X., 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623-630
|
Stuber, C.W., Lincoln, S.E., Wolff, D., Helentjaris, T.,Lander, E., 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132, 823-839
|
Tan, X.L., Tan, Y.L., Zhao, Y.H., Zhang, X.M., Hong, R.K., Jin, S.L., Liu, X.R.,Huang, D.J., 2004. Identification of the Rf gene conferring fertility restoration of the CMS Dian-type 1 in rice by using simple sequence repeat markers and advanced inbred lines of restorer and maintainer. Plant Breed. 123, 338-341
|
Taylor, J.,Butler, D., 2017. R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. J. Stat. Softw. 79, 1-29
|
Ting, Y., 1949. Origination of the rice cultivation in China. J. College of Agric. Sun Yat-Sen University 7, 11-24
|
Wang, G.W., He, Y.Q., Xu, C.G.,Zhang, Q., 2006. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor. Appl. Genet. 112, 382-387
|
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49
|
Wang, Y.X., Xiong, G.S., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y.X., Zeng, L.J., Xu, E.B., Xu, J., et al., 2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944-+
|
Wei, H., Jiang, Y., Zhao, K., Xu, J., Zhang, H., Huo, Z., Xu, K., Wei, H., Zheng, F.,others, 2013. Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agronomica Sinica 39, 2201-2210
|
Wu, W.X., Zheng, X.M., Lu, G.W., Zhong, Z.Z., Gao, H., Chen, L.P., Wu, C.Y., Wang, H.J., Wang, Q., Zhou, K.N., et al., 2013. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. U. S. A. 110, 2775-2780
|
Xiao, J.H., Li, J.M., Yuan, L.P.,Tanksley, S.D., 1995. Dominance Is the Major Genetic-Basis of Heterosis in Rice as Revealed by Qtl Analysis Using Molecular Markers. Genetics 140, 745-754
|
Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, K., Zhao, H., Yang, M., Li, P., Zhang, X., Yuan, J., et al., 2015. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl. Acad. Sci. U. S. A. 112, E5411-5419
|
Xie, Y., Shen, R., Chen, L.,Liu, Y.G., 2019. Molecular mechanisms of hybrid sterility in rice. Sci. China Life Sci. 62, 737-743
|
Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., et al., 2011. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4, 319-330
|
Yang, J.Y., Zhao, X.B., Cheng, K., Du, H.Y., Ouyang, Y.D., Chen, J.J., Qiu, S.Q., Huang, J.Y., Jiang, Y.H., Jiang, L.W., et al., 2012. A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science 337, 1336-1340
|
Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., Ito, A., Koketsu, E., Kawamura, M., Kotake, K., et al., 2019. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. U. S. A. 116, 21262-21267
|
Yano, K., Ookawa, T., Aya, K., Ochiai, Y., Hirasawa, T., Ebitani, T., Takarada, T., Yano, M., Yamamoto, T., Fukuoka, S., et al., 2015. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant 8, 303-314
|
Yu, B., Lin, Z., Li, H., Li, X., Li, J., Wang, Y., Zhang, X., Zhu, Z., Zhai, W., Wang, X., et al., 2007. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891-898
|
Yu, G.C., Smith, D.K., Zhu, H.C., Guan, Y.,Lam, T.T.Y., 2017. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36
|
Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q.,Saghai Maroof, M.A., 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 94, 9226-9231
|
Yu, Y., Hu, X., Zhu, Y.,Mao, D., 2020. Re-evaluation of the rice ‘Green Revolution’ gene: the weak allele SD1-EQ from japonica rice may be beneficial for super indica rice breeding in the post-Green Revolution era. Mol. Breed. 40, 84
|
Zhang, B., Liu, H.Y., Qi, F.X., Zhang, Z.Y., Li, Q.P., Han, Z.M.,Xing, Y.Z., 2019. Genetic Interactions Among Ghd7, Ghd8, OsPRR37 and Hd1 Contribute to Large Variation in Heading Date in Rice. Rice 12, 1-13
|
Zhang, G.H., Li, S.Y., Wang, L., Ye, W.J., Zeng, D.L., Rao, Y.C., Peng, Y.L., Hu, J., Yang, Y.L., Xu, J., et al., 2014. LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol. Plant 7, 1350-1364
|
Zhang, H., Zhang, C.Q., Sun, Z.Z., Yu, W., Gu, M.H., Liu, Q.Q.,Li, Y.S., 2011. A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid. Theor. Appl. Genet. 123, 1247-1256
|
Zhang, J., Zhou, X., Yan, W., Zhang, Z., Lu, L., Han, Z., Zhao, H., Liu, H., Song, P., Hu, Y., et al., 2015. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol. 208, 1056-1066
|
Zhang, C., Sun, Y., Wang, D., Sun, W., Yu, Y., Hu, Z.,Yu, S., 2021. Dissection of heterotic loci for grain yield using interconnected chromosome segment substitution lines in rice. Crop J
|
Zhang, L., Yu, H., Ma, B., Liu, G., Wang, J., Wang, J., Gao, R., Li, J., Liu, J., Xu, J., et al., 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789
|
Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J.,Zhang, Q., 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 109, 15847-15852
|
Zhou, X., Nong, C., Wu, B., Zhou, T., Zhang, B., Liu, X., Gao, G., Mi, J., Zhang, Q., Liu, H., et al., 2021. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J. Exp. Bot. 72, 6963-6976
|