5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 5
May  2022
Turn off MathJax
Article Contents

Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice

doi: 10.1016/j.jgg.2022.02.022
Funds:

We thank Linna Guo for drawing the cartoon pictures of rice plants. We also thank Xianmeng Wang for generating a schematic picture of QTL mapping using the qtl package in R. This work was supported by grants from the National Natural Science Foundation of China (31991223, 32170622 and 31821005), the Natural Science Foundation of Hubei Province (2019CFA061), and the Fundamental Research Funds for the Central Universities (2662020SKPY005).

  • Received Date: 2021-11-07
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-02-15
  • Publish Date: 2022-03-08
  • The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.
  • loading
  • Chen, J., Ding, J., Ouyang, Y., Du, H., Yang, J., Cheng, K., Zhao, J., Qiu, S., Zhang, X., Yao, J., Liu, K., Wang, L., Xu, C., Li, X., Xue, Y., Xia, M., Ji, Q., Lu, J., Xu, M., Zhang, Q., 2008. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. U.S.A. 105, 11436-11441
    Chen, F.F., He, G.M., He, H., Chen, W., Zhu, X.P., Liang, M.Z., Chen, L.B., Deng, X.W., 2010. Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol. 52, 971-980
    Chen, L., Liu, Y.G., 2014. Male sterility and fertility restoration in crops. Annu Rev Plant Biol. 65, 579-606
    Chen, Z.J., 2013. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 14, 471-482
    Davenport, C., 1908. Degeneration, albinism and inbreeding. Science 28, 454-455
    Ding, J., Lu, Q., Ouyang, Y., Mao, H., Zhang, P., Yao, J., Xu, C., Li, X., Xiao, J., Zhang, Q., 2012a. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109, 2654-2659
    Ding, J., Shen, J., Mao, H., Xie, W., Li, X., Zhang, Q., 2012b. RNA-Directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol Plant. 5, 1210-1216
    Du, H., Ouyang, Y., Zhang, C., Zhang, Q., 2011. Complex evolution of S5, a major reproductive barrier regulator, in the cultivated rice Oryza sativa and its wild relatives. New Phytol. 191, 275-287
    East, E., 1908. Inbreeding in corn. Rep Conn Agric Exp Stn., 419-428
    Fan, Y.R., Yang, J.Y., Mathioni, S.M., Yu, J.S., Shen, J.Q., Yang, X.F., Wang, L., Zhang, Q.H., Cai, Z.X., Xu, C.G., Li, X.H., Xiao, J.H., Meyers, B.C., Zhang, Q.F., 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 113, 15144-15149
    Fan, Y.R., Zhang, Q.F., 2018. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod. 31, 3-14
    Goff, S.A., Zhang, Q., 2013. Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms. Curr Opin Plant Biol. 16, 221-227
    Greaves, I.K., Gonzalez-Bayon, R., Wang, L., Zhu, A., Liu, P.C., Groszmann, M., Peacock, W.J., Dennis, E.S., 2015. Epigenetic Changes in Hybrids. Plant Physiol. 168, 1197-1205
    Groszmann, M., Greaves, I.K., Fujimoto, R., Peacock, W.J., Dennis, E.S., 2013. The role of epigenetics in hybrid vigour. Trends Genet. 29, 684-690
    He, G.M., Zhu, X.P., Elling, A.A., Chen, L.B., Wang, X.F., Guo, L., Liang, M.Z., He, H., Zhang, H.Y., Chen, F.F., Qi, Y.J., Chen, R.S., Deng, X.W., 2010. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17-33
    Hou, J., Cao, C., Ruan, Y., Deng, Y., Liu, Y., Zhang, K., Tan, L., Zhu, Z., Cai, H., Liu, F., Sun, H., Gu, P., Sun, C., Fu, Y., 2019. ESA1 is involved in embryo sac abortion in interspecific hybrid progeny of rice. Plant Physiol. 180, 356-366
    Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U.S.A. 100, 2574-2579
    Hua, J.P., Xing, Y.Z., Xu, C.G., Sun, X.L., Yu, S.B., Zhang, Q.F., 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885-1895
    Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., Chen, N., Hao, Z., Liu, K., Zhu, C., Huang, T., Zhao, Q., Zhang, L., Fan, D., Zhou, C., Lu, Y., Weng, Q., Wang, Z.X., Li, J., Han, B., 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun. 6, 6258
    Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., Chen, N., Huang, T., Zhang, L., Fan, D., Chen, J., Zhou, C., Lu, Y., Weng, Q., Han, B., 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629-633
    Huang, Y., Zhang, L.D., Zhang, J.W., Yuan, D.J., Xu, C.G., Li, X.H., Zhou, D.X., Wang, S.P., Zhang, Q.F., 2006. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol. 62, 579-591
    Kato, S., Kosaka, H., Hara, S., 1928. On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci. Fac. Agric. Kyushu Univ. 3, 132-147
    Koide, Y., Ogino, A., Yoshikawa, T., Kitashima, Y., Saito, N., Kanaoka, Y., Onishi, K., Yoshitake, Y., Tsukiyama, T., Saito, H., Teraishi, M., Yamagata, Y., Uemura, A., Takagi, H., Hayashi, Y., Abe, T., Fukuta, Y., Okumoto, Y., Kanazawa, A., 2018. Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 115, E1955-E1962
    Li, G., Jin, J., Zhou, Y., Bai, X., Mao, D., Tan, C., Wang, G., Ouyang, Y., 2019. Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. Sci China Life Sci. 62, 507-516
    Li, G., Li, X., Wang, Y., Mi, J., Xing, F., Zhang, D., Dong, Q., Li, X., Xiao, J., Zhang, Q., Ouyang, Y., 2017. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice. Plant J. 92, 349-362
    Li, J.X., Yu, S.B., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q., 2000. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet. 101, 248-254
    Li, X.H., Lu, Q., Wang, F.L., Xu, C.G., Zhang, Q.F., 2001. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica 119, 343-348
    Liu, A., Zhang, Q., Li, H., 1992. Location of a gene for wide-compatibility in the RFLP linkage map. Rice Genetics Newsletter 9, 134-136
    Liu, H.Y., Xu, C.G., Zhang, Q.F., 2004. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sexual Plant Reprod. 17, 55-62
    Liu, K.D., Wang, J., Li, H.B., Xu, C.G., Liu, A.M., Li, X.H., Zhang, Q., 1997. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet. 95, 809-814
    Liu, K.D., Zhou, Z.Q., Xu, C.G., Zhang, Q., Maroof, M.A., 1996. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90, 275-280
    Lin, Z., Qin, P., Zhang, X., Fu, C., Deng, H., Fu, X., Huang, Z., Jiang, S., Li, C., Tang, X., Wang, X., He, G., Yang, Y., He, H., Deng, X.W., 2020. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 117, 4623-4631
    Liu, N., Shan, Y., Wang, F.P., Xu, C.G., Peng, K.M., Li, X.H., Zhang, Q.F., 2001. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Mol. Genet. Genom. 266, 271-275
    Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C., Mei, M., Xia, J., Wang, L., Liu, Y.G., 2008. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc. Natl. Acad. Sci. U.S.A. 105, 18871-18876
    Lu, Q., Li, X.H., Guo, D., Xu, C.G., Zhang, Q., 2005. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol. Genet. Genom. 273, 507-511
    Lv, Q., Li, W., Sun, Z., Ouyang, N., Jing, X., He, Q., Wu, J., Zheng, J., Zheng, J., Tang, S., Zhu, R., Tian, Y., Duan, M., Tan, Y., Yu, D., Sheng, X., Sun, X., Jia, G., Gao, H., Zeng, Q., Li, Y., Tang, L., Xu, Q., Zhao, B., Huang, Z., Lu, H., Li, N., Zhao, J., Zhu, L., Li, D., Yuan, L., Yuan, D., 2020. Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nat Commun. 11, 4778
    Ma, Q., Hedden, P., Zhang, Q., 2011. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol. 156, 1905-1920
    Ma, X., Xing, F., Jia, Q.X., Zhang, Q.L., Hu, T., Wu, B.G., Shao, L., Zhao, Y., Zhang, Q.F., Zhou, D.X., 2021. Parental variation in CHG methylation is associated with allelic-specific expression in elite hybrid rice. Plant Physiol. 186, 1025-1041
    Maroof, M.A.S., Yang, G.P., Zhang, Q., Gravois, K.A., 1997. Correlation between molecular marker distance and hybrid performance in U.S. southern long grain rice. Crop Sci. 37, 145-150
    Mei, M.H., Chen, L., Zhang, Z.H., Li, Z.Y., Xu, C.G., Zhang, Q.F., 1999a. pms3 is the locus causing the original photoperiod-sensitive male sterility mutation of ‘Nongken 58S’. Sci China Ser C. 42, 316-322
    Mei, M.H., Dai, X.K., Xu, C.G., Zhang, Q.F., 1999b. Mapping and genetic analysis of the genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Sci. 39, 1711-1715
    Mi, J., Li, G., Xu, C., Yang, J., Yu, H., Wang, G., Li, X., Xiao, J., Song, H., Zhang, Q., Ouyang, Y., 2020. Artificial selection in domestication and breeding prevents speciation in rice. Mol Plant. 13, 650-657
    Mi, J.M., Lei, Y., Kim, S.R., Prahalada, G.D., Ouyang, Y.D., Mou, T.M., 2019. An effective strategy for fertility improvement of indica-japonica hybrid rice by pyramiding S5-n, f5-n, and pf12-j. Mol Breeding. 39, 1-13
    Mi, J.M., Li, G.W., Huang, J.Y., Yu, H.H., Zhou, F.S., Zhang, Q.F., Ouyang, Y.D., Mou, T.M., 2016. Stacking S5-n and f5-n to overcome sterility in indica-japonica hybrid rice. Theor Appl Genet. 129, 563-575
    Minvielle, F., 1987. Dominance is not necessary for heterosis: a two-locus model. Genet Res. 49, 245-247
    Niu, S.S.Y., Y,M. Xu, C.G. Li, G.W. Ouyang, Y.D., 2014. Prezygotic reproductive isolation and fertility in crosses between Indica and Japonica subspecies(in Chinese with English abstract). Sci China Life Sci. 44, 815-821
    Oka, H.I., 1988. Origin of cultivated rice. Scientific Societies Press, Tokyo, Japan, 181-209
    Ouyang, Y., 2019. Understanding and breaking down the reproductive barrier between Asian and African cultivated rice: a new start for hybrid rice breeding. Sci China Life Sci. 62, 1114-1116
    Ouyang, Y., Chen, J., Ding, J., Zhang, Q., 2009. Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Sci. Bull. 54, 2332-2341
    Ouyang, Y., Li, G., Mi, J., Xu, C., Du, H., Zhang, C., Xie, W., Li, X., Xiao, J., Song, H., Zhang, Q., 2016. Origination and establishment of a trigenic reproductive isolation system in rice. Mol plant. 9, 1542-1545
    Ouyang, Y., Liu, Y.G., Zhang, Q., 2010. Hybrid sterility in plant: stories from rice. Curr Opin Plant Biol. 13, 186-192
    Ouyang, Y., Zhang, Q., 2013. Understanding reproductive isolation based on the rice model. Annu Rev Plant Biol. 64, 111-135
    Ouyang, Y., Zhang, Q., 2018. The molecular and evolutionary basis of reproductive isolation in plants. J Genet Genomics. 45, 613-620
    Qiu, S.Q., Liu, K., Jiang, J.X., Song, X., Xu, C.G., Li, X.H., Zhang, Q., 2005. Delimitation of the rice wide compatibility gene S5n to a 40-kb DNA fragment. Theor Appl Genet. 111, 1080-1086
    Schnell, F.W., Cockerham, C.C, 1992. Multiplicative vs. arbitrary gene action in heterosis. Genetics 131, 461-469
    Shao, L., Xing, F., Xu, C., Zhang, Q., Che, J., Wang, X., Song, J., Li, X., Xiao, J., Chen, L.L., Ouyang, Y., Zhang, Q., 2019. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc. Natl. Acad. Sci. U.S.A. 116, 5653-5658
    Shull, G., 1908. The composition of a field of maize. Am Breeders Association Rep. 4, 296-301
    Song, X., Qiu, S.Q., Xu, C.G., Li, X.H., Zhang, Q., 2005. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet. 110, 205-211
    Song, J.M., Xie, W.Z., Wang, S., Guo, Y.X., Koo, D.H., Kudrna, D., Gong, C., Huang, Y., Feng, J.W., Zhang, W., Zhou, Y., Zuccolo, A., Long, E., Lee, S., Talag, J., Zhou, R., Zhu, X.T., Yuan, D., Udall, J., Xie, W., Wing, R.A., Zhang, Q., Poland, J., Zhang, J., Chen, L.L., 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol Plant. 14, 1757-1767
    Wang, J., Liu, K.D., Xu, C.G., Li, X.H., Zhang, Q., 1998. The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis. Theor Appl Genet. 97, 407-412
    Wang, L., Xie, W., Chen, Y., Tang, W., Yang, J., Ye, R., Liu, L., Lin, Y., Xu, C., Xiao, J., Zhang, Q., 2010. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J. 61, 752-766
    Wang, J., Yao, W., Zhu, D., Xie, W.B., Zhang, Q.F., 2015. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. Elife 4, e04250
    Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., Huang, X., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet. 53, 243-253
    Wing, R.A., Purugganan, M.D., Zhang, Q., 2018. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19(8), 505-517
    Xie, W., Feng, Q., Yu, H., Huang, X., Zhao, Q., Xing, Y., Yu, S., Han, B., Zhang, Q., 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. U.S.A. 107, 10578-10583
    Xie, Y., Niu, B., Long, Y., Li, G., Tang, J., Zhang, Y., Ren, D., Liu, Y.G., Chen, L., 2017a. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J Integr Plant Biol. 59, 669-679
    Xie, Y., Shen, R., Chen, L., Liu, Y.G., 2019a. Molecular mechanisms of hybrid sterility in rice. Sci China Life Sci. 62, 737-743
    Xie, Y., Tang, J., Xie, X., Li, X., Huang, J., Fei, Y., Han, J., Chen, S., Tang, H., Zhao, X., Tao, D., Xu, P., Liu, Y.G., Chen, L., 2019b. An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. Nature Commun. 10, 2501
    Xie, Y., Xu, P., Huang, J., Ma, S., Xie, X., Tao, D., Chen, L., Liu, Y.G., 2017b. Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 Locus encoding a peptidase-like protein. Mol Plant. 10, 1137-1140
    Xiong, L.Z., Xu, C.G., Saghai Maroof, M.A., Zhang, Q., 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet. 261, 439-446
    Xiong, L.Z., Yang, G.P., Xu, C.G., Zhang, Q., Saghai Maroof, M.A., 1998. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breeding. 4, 129-136
    Xu, C.G., 1995. Adsorption and germination of pollens in crosses within and between indica and japonica rice (In Chinese with English abstract). J. Huazhong Agric.Univ. 05, 421-424
    Yang, G.P., Maroof, M.A., Xu, C.G., Zhang, Q., Biyashev, R.M., 1994. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet. 245, 187-194
    Yang, J., Zhao, X., Cheng, K., Du, H., Ouyang, Y., Chen, J., Qiu, S., Huang, J., Jiang, Y., Jiang, L., Ding, J., Wang, J., Xu, C., Li, X., Zhang, Q., 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337, 1336-1340
    Yao, W., Li, G.W., Cui, Y.R., Yu, Y.M., Zhang, Q.F., Xu, S.Z., 2019. Mapping quantitative trait loci using binned genotypes. J Genet Genomics. 46, 343-352
    Yu, H.H., Xie, W.B., Wang, J., Xing, Y.Z., Xu, C.G., Li, X.H., Xiao, J.H., Zhang, Q.F., 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6, e17595
    Yu, S., Ali, J., Zhang, C., Li, Z., Zhang, Q., 2020. Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa. Theor Appl Genet. 133, 1427-1442
    Yu, S., Ali, J., Zhou, S., Ren, G., Xie, H., Xu, J., Yu, X., Zhou, F., Peng, S., Ma, L., Yuan, D., Li, Z., Chen, D., Zheng, R., Zhao, Z., Chu, C., You, A., Wei, Y., Zhu, S., Gu, Q., He, G., Li, S., Liu, G., Liu, C., Zhang, C., Xiao, J., Luo, L., Li, Z., Zhang, Q., 2022. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. Mol Plant. 15, 9-26
    Yu, J.P., Han, J.J., Kim, Y.J., Song, M., Yang, Z., He, Y., Fu, R.F., Luo, Z.J., Hu, J.P., Liang, W.Q., Zhang, D.B., 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc. Natl. Acad. Sci. U.S.A. 114, 12327-12332
    Yu, S., Li, J., Xu, C., Tan, Y., Gao, Y., Li, X., Zhang, Q., Saghai Maroof, M., 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U.S.A. 94, 9226-9231
    Yu, X., Zhao, Z., Zheng, X., Zhou, J., Kong, W., Wang, P., Bai, W., Zheng, H., Zhang, H., Li, J., Liu, J., Wang, Q., Zhang, L., Liu, K., Yu, Y., Guo, X., Wang, J., Lin, Q., Wu, F., Ren, Y., Zhu, S., Zhang, X., Cheng, Z., Lei, C., Liu, S., Liu, X., Tian, Y., Jiang, L., Ge, S., Wu, C., Tao, D., Wang, H., Wan, J., 2018. A selfish genetic element confers non-Mendelian inheritance in rice. Science 360, 1130-1132
    Yuan, L.P., 1987. Strategies of the development of hybrid rice breeding (in Chinese). Hybrid Rice 1, 1-3
    Zhang, H., Liang, W., Yang, X., Luo, X., Jiang, N., Ma, H., Zhang, D., 2010. Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22, 672-689
    Zhang, H., Xu, C., He, Y., Zong, J., Yang, X., Si, H., Sun, Z., Hu, J., Liang, W., Zhang, D., 2013. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc. Natl. Acad. Sci. U.S.A. 110, 76-81
    Zhang, Q., 2007. Strategies for developing Green Super Rice. Proc. Natl. Acad. Sci. U.S.A. 104, 16402-16409
    Zhang, Q., Gao, Y.J., Yang, S.H., Ragab, R.A., Maroof, M.A., Li, Z.B., 1994. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet. 89, 185-192
    Zhang, Q., Maroof, M.A., Lu, T.Y., Shen, B.Z., 1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet. 83, 495-499
    Zhang, J.W., Chen, L.L., Xing, F., Kudrna, D.A., Yao, W., Copetti, D., Mu, T., Li, W.M., Song, J.M., Xie, W.B., Lee, S., Talag, J., Shao, L., An, Y., Zhang, C.L., Ouyang, Y.D., Sun, S., Jiao, W.B., Lv, F., Du, B.G., Luo, M.Z., Maldonado, C.E., Goicoechea, J.L., Xiong, L.Z., Wu, C.Y., Xing, Y.Z., Zhou, D.X., Yu, S.B., Zhao, Y., Wang, G.W., Yu, Y.S., Luo, Y.J., Zhou, Z.W., Hurtado, B.E.P., Danowitz, A., Wing, R.A., Zhang, Q.F., 2016. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc. Natl. Acad. Sci. U.S.A. 113, E5163-E5171
    Zhang, Q.F., Gao, Y.J., Maroof, M.A.S., Yang, S.H., Li, J.X., 1995. Molecular divergence and hybrid performance in rice. Mol Breeding. 1, 133-142
    Zhao, M.F., Li, X.H., Yang, J.B., Xu, C.G., Hu, R.Y., Liu, D.J., Zhang, Q., 1999. Relationship between molecular marker heterozygosity and hybrid performance in intra- and inter-subspecific crosses of rice. Plant Breeding 118, 139-144
    Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J., Zhang, Q., 2012a. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U.S.A. 109, 15847-15852
    Zhou, H., Liu, Q., Li, J., Jiang, D., Zhou, L., Wu, P., Lu, S., Li, F., Zhu, L., Liu, Z., Chen, L., Liu, Y.-G., Zhuang, C., 2012b. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649-660
    Zhou, X., Nong, C., Wu, B., Zhou, T., Zhang, B., Liu, X., Gao, G., Mi, J., Zhang, Q., Liu, H., Liu, S., Li, Z., He, Y., Mou, T., Guo, S., Li, S., Yang, Y., Zhang, Q., Xing, Y., 2021. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J Exp Bot. 72, 6963-6976
    Zhu, D., Zhou, G., Xu, C., Zhang, Q., 2016. Genetic components of heterosis for seedling traits in an elite rice hybrid analyzed using an immortalized F2 population. J Genet Genomics. 43, 87-97
    Zhou, H., Zhou, M., Yang, Y.Z., Li, J., Zhu, L.Y., Jiang, D.G., Dong, J.F., Liu, Q.J., Gu, L.F., Zhou, L.Y., Feng, M.J., Qin, P., Hu, X.C., Song, C.L., Shi, J.F., Song, X.W., Ni, E.D., Wu, X.J., Deng, Q.Y., Liu, Z.L., Chen, M.S., Liu, Y.G., Cao, X.F., Zhuang, C.X., 2014. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nature Commun. 5, 4884
    Zhu, Y., Yu, Y., Cheng, K., Ouyang, Y., Wang, J., Gong, L., Zhang, Q., Li, X., Xiao, J., Zhang, Q., 2017. Processes underlying a reproductive barrier in indica-japonica rice hybrids revealed by transcriptome analysis. Plant Physiol. 174, 1683-1696
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (399) PDF downloads (76) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return