Alvarez, C., Calo, L., Romero, L. C., Garcia, I., Gotor, C., 2010. An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 152(2), 656-669
|
Aroca, A., Benito, J. M., Gotor, C., Romero, L. C., 2017. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J. Exp. Bot. 68, 4915-4927
|
Aroca, A., Serna, A., Gotor, C., Romero, L. C., 2015. S-sulfhydration:a cysteine posttranslational modification in plant systems. Plant Physiol. 168, 334-342
|
Aroca, A., Zhang, J., Xie, Y., Romero, L. C., Gotor, C., 2021. Hydrogen sulfide signaling in plant adaptations to adverse conditions:molecular mechanisms. J. Exp. Bot. 72, 5893-5904
|
Baudouin, E., Poilevey, A., Hewage, N. I., Cochet, F., Puyaubert, J., Bailly, C.; 2016. The significance of hydrogen sulfide for Arabidopsis seed germination. Front. Plant Sci. 7, 930
|
Bauer, M., Dietrich, C., Nowak, K., Sierralta, W. D., Papenbrock, J., 2004. Intracellular localization of Arabidopsis sulfurtransferases. Plant Physiol. 135(2), 916-926
|
Begara-Morales, J. C., Chaki, M., Sanchez-Calvo, B., Mata-Perez, C., Leterrier, M., Palma, J. M., Barroso, J. B., Corpas, F. J., 2013. Protein tyrosine nitration in pea roots during development and senescence. J. Exp. Bot. 64, 1121-1134
|
Carballal, S., Trujillo, M., Cuevasanta, E., Bartesaghi, S., Moller, M. N., Folkes, L. K., Garcia-Bereguiain, M. A., Gutierrez-Merino, C., Wardman, P., Denicola, A., et al., 2011. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic. Biol. Med. 50(1), 196-205
|
Chaki, M., Valderrama, R., Fernandez-Ocana, A. M., Carreras, A., Gomez-Rodriguez, M. V., Lopez-Jaramillo, J., Begara-Morales, J. C., Sanchez-Calvo, B., Luque, F., Leterrier, M., et al., 2011. High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ. 34, 1803-1818
|
Chen, J., Wang, W., Wu, F., He, E., Liu, X., Shangguan, Z., Zheng, H., 2015. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci. Rep. 5, 12516
|
Chen, J., Wu, F., Wang, W., Zheng, C., Lin, G., Dong, X., He, J., Pei, Z., Zheng, H., 2011. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J. Exp. Bot. 62(13), 4481-4493
|
Chen, P., Yang, W., Wen, M., Jin, S., Liu, Y., 2021. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. Plant Physiol. Biochem. 167, 738-747
|
Chen, S., Jia, H., Wang, X., Shi, C., Wang, X., Ma, P., Wang, J., Ren, M., Li, J., 2020a. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol. Plant 13, 732-744
|
Chen, T., Tian, M., Han, Y., 2020b. Hydrogen sulfide:a multi-tasking signal molecule in the regulation of oxidative stress responses. J. Exp. Bot. 71,2862-2869
|
Cheng, W., Zhang, L., Jiao, C., Su, M., Yang, T., Zhou, L., Peng, R., Wang, R., Wang, C., 2013. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol. Biochem. 70, 278-286
|
Christou, A., Manganaris, G. A., Papadopoulos, I., Fotopoulos, V., 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 64, 1953-1966
|
Corpas F. J., 2019. Hydrogen sulfide:a new warrior against abiotic stress. Trends Plant Sci. 24(11), 983-988
|
Corpas, F. J., Barroso, J. B., 2013. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol. 199, 633-635
|
Corpas, F. J., Barroso, J. B., Gonzalez-Gordo, S., Munoz-Vargas, M. A., Palma, J. M., 2019. Hydrogen sulfide:a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J. Integr. Plant Biol. 61, 871-883
|
Cui, W., Chen, H., Zhu, K., Jin, Q., Xie, Y., Cui, J., Xia, Y., Zhang, J., Shen, W., 2014. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostasis. PLoS One 9, e109669
|
da-Silva, C. J., Mollica, D., Vicente, M. H., Peres, L., Modolo, L. V., 2018. NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 76, 164-173
|
Deng, G., Zhou, L., Wang, Y., Zhang, G., Chen, X., 2020. Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta 251(2), 42
|
Duan, X., Xu, S., Xie, Y., Li, L., Qi, W., Parizot, B., Zhang, Y., Chen, T., Han, Y., Van Breusegem, F., et al., 2021. Periodic root branching is influenced by light through an HY1-HY5-auxin pathway. Curr. Biol. 31(17), 3834-3847.e5
|
Fang, H., Liu, Z., Long, Y., Liang, Y., Jin, Z., Zhang, L., Liu, D., Li, H., Zhai, J., Pei, Y., 2017. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. Plant J. 91(6), 1038-1050
|
Foyer, C.H., Noctor G., 2020. Redox homeostasis and signaling in a higher-CO2 world. Annu. Rev. Plant Biol. 71, 157-182
|
Fu, L., Liu, K., He, J., Tian, C., Yu, X., Yang, J., 2020. Direct proteomic mapping of cysteine persulfidation. antioxid redox signal. 33(15), 1061-1076
|
Gonzalez-Gordo, S., Palma, J. M., Corpas, F. J., 2020. Appraisal of H2S metabolism in Arabidopsis thaliana:in silico analysis at the subcellular level. Plant Physiol. Biochem. 155, 579-588
|
Han, Y., Zhang, J., Chen, X., Gao, Z., Xuan, W., Xu, S., Ding, X., Shen, W., 2008. Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol. 177(1),155-166
|
Hatzfeld, Y., Maruyama, A., Schmidt, A., Noji, M., Ishizawa, K., Saito, K., 2000. beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol. 123(3), 1163-1171
|
Hou, Z., Wang, L., Liu, J., Hou, L., Liu, X., 2013. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J. Integr. Plant Biol. 55(3), 277-289
|
Hu, K., Zhang, X., Yao, G., Rong, Y., Ding, C., Tang, J., Yang, F., Huang, Z., Xu, Z., Chen, X., et al., 2020. A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato. Hortic. Res. 7(1),211
|
Huang, J., Willems, P., Wei, B., Tian, C., Ferreira, R. B., Bodra, N., Martinez Gache, S. A., Wahni, K., Liu, K., Vertommen, D., et al., 2019. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc. Natl. Acad. Sci. U.S.A. 116(42), 21256-21261
|
Iqbal, N., Umar, S., Khan, N. A., Corpas, F. J., 2021. Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) Plants. Antioxidants (Basel). 10, 108
|
Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., Pei, Y., 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 414(3), 481-486
|
Jurado-Flores, A., Romero, L. C., Gotor, C., 2021. Label-free quantitative proteomic analysis of nitrogen starvation in Arabidopsis root reveals new aspects of H2S signaling by protein persulfidation. Antioxidants (Basel). 10, 508
|
Kaya, C., Higgs, D., Ashraf, M., Alyemeni, M. N., Ahmad, P., 2020. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol. Plantarum 168
|
Kharbech, O., Ben Massoud, M., Sakouhi, L., Djebali, W., Jose Mur, L. A., Chaoui, A., 2020. Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation. Plant Physiol. Biochem. 154, 646-656
|
Kovacs, I., Holzmeister, C., Wirtz, M., Geerlof, A., Frohlich, T., Romling, G., Kuruthukulangarakoola, G. T., Linster, E., Hell, R., Arnold, G. J., et al., 2016. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front. Plant Sci. 7, 1669
|
Laureano-Marin, A. M., Garcia, I., Romero, L. C., Gotor, C., 2014. Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. Front. Plant Sci. 5, 683
|
Laureano-Marin, A. M., Moreno, I., Romero, L. C., Gotor, C., 2016. Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiol. 171(2), 1378-1391
|
Li, J., Shi, C., Wang, X., Liu, C., Ding, X., Ma, P., Wang, X., Jia, H., 2020. Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to Copper Oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol. Biochem. 156, 257-266
|
Li, Z., Xie, L., Li, X., 2015. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol. 177, 121-127
|
Li, Z., Yang, S., Long, W., Yang, G., Shen, Z., 2013. Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ. 36, 1564-1572
|
Li, Z., Zhu, Y., He, X., Yong, B., Peng, Y., Zhang, X., Ma, X., Yan, Y., Huang, L., Nie, G., 2019. The hydrogen sulfide, a downstream signaling molecule of hydrogen peroxide and nitric oxide, involves spermidine-regulated transcription factors and antioxidant defense in white clover in response to de-hydration. Environ. Exp. Bot. 161, 255-264
|
Lin, Y., Zhang, W., Qi, F., Cui, W., Xie, Y., Shen, W., 2014. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J. Plant Physiol. 171(2), 1-8
|
Liu, Y., Shen, Z., Simon, M., Li, H., Ma, D., Zhu, X., Zheng, H., 2019. Comparative proteomic analysis reveals the regulatory effects of H2S on salt tolerance of mangrove plant Kandelia obovata. Int. J. Mol. Sci. 21, 118
|
Ma, L., Yang, L., Zhao, J., Wei, J., Kong, X., Wang, C., Zhang, X., Yang, Y., Hu, X., 2015. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta 241, 887-906
|
Ma, X., Zhang, L., Pei, Z., Zhang, L., Liu, Z., Liu, D., Hao, X., Jin, Z., Pei, Y., 2021a. Hydrogen sulfide promotes flowering in heading Chinese cabbage by S-sulfhydration of BraFLCs. Hortic. Res. 8(1), 19
|
Ma, Y., Shao, L., Zhang, W., Zheng, F., 2021b. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of Arabidopsis thaliana. Funct. Plant Biol. 48, 195-205
|
Mei, Y., Chen, H., Shen, W., Shen, W., Huang, L., 2017. Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biol. 17(1), 162
|
Mills, G.; Schmidt, K. H.; Matheson, M. S.; Meisel, D., 1987. Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion. Phys. Chem. 91, 1590-1596
|
Moseler, A., Dhalleine, T., Rouhier, N., Couturier, J., 2021. Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems. J. Boil. Chem. 296, 100429
|
Muñoz-Vargas, M. A., González-Gordo, S., Cañas, A., Lopez-Jaramillo, J., Palma, J. M., Corpas, F. J., 2018. Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide 81, 36-45
|
Ni, X., Li, X., Shen, T., Qian, W., Xian, M., 2021. A sweet H2S/H2O2 dual release system and specific protein S-persulfidation mediated by thioglucose/glucose oxidase. J. Am. Chem. Soc. 143(33), 13325-13332
|
Nishizawa, A., Yabuta, Y., Shigeoka, S., 2008. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3), 1251-1263
|
Noctor, G., Reichheld, J. P., Foyer, C. H., 2018. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3-12
|
Polle A., 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126(1), 445-462
|
Riemenschneider, A., Wegele, R., Schmidt, A., Papenbrock, J., 2005. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J. 272(5), 1291-1304
|
Scuffi, D., Alvarez, C., Laspina, N., Gotor, C., Lamattina, L., Garcia-Mata, C., 2014. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol. 166, 2065-2076
|
Scuffi, D., Nietzel, T., Di Fino, L. M., Meyer, A. J., Lamattina, L., Schwarzlander, M., Laxalt, A. M., Garcia-Mata, C., 2018. Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. Plant Physiol. 176, 2532-2542
|
Shan, C., Dai, H., Sun Y., 2012. Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves. Aust. J. Crop. Sci. 6, 248-254
|
Shan, C., Zhang, S., Li, D., Zhao, Y., Tian, X., Zhao, X., Wu, Y., Wei, X., Liu, R., 2011. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol. Plant. 33, 2533-2540
|
Shen, J., Xing, T., Yuan, H., Liu, Z., Jin, Z., Zhang, L., Pei, Y., 2013. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS One. 8, e77047
|
Shen, J., Zhang, J., Zhou, M., Zhou, H., Cui, B., Gotor, C., Romero, L. C., Fu, L., Yang, J., Foyer, C. H.,et al., 2020. Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32, 1000-1017
|
Shi, H., Ye, T., Han, N., Bian, H., Liu, X., Chan, Z., 2015. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J. Integr. Plant Biol. 57(7), 628-640
|
Shimizu, T., Hayashi, Y., Arai, M., McGlynn, S. E., Masuda, T., Masuda, S., 2021. Repressor activity of SqrR, a master regulator of persulfide-responsive genes, is regulated by heme coordination. Plant Cell Physiol. 62(1), 100-110
|
Sirichandra, C., Gu, D., Hu, H. C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., et al., 2009. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 583(18), 2982-2986
|
Takahashi, H., Kopriva, S., Giordano, M., Saito, K., Hell, R., 2011. Sulfur assimilation in photosynthetic organisms:molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157-184
|
Tang, X., An, B., Cao, D., Xu, R., Wang, S., Zhang, Z., Liu, X., Sun, X., 2020. Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings. Front. Plant Sci. 11, 108
|
Wang, P., Du, Y., Hou, Y., Zhao, Y., Hsu, C., Yuan, F., Zhu, X., Tao, W., Song, C., Zhu, J., 2015. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. NatI. Acad. Sci. U. S. A. 112, 613-618
|
Wedmann, R., Bertlein, S., Macinkovic, I., Boltz, S., Miljkovic, J., Munoz, L. E., Herrmann, M., Filipovic, M. R., 2014. Working with "H2S":facts and apparent artifacts. Nitric Oxide. 41, 85-96
|
Wei, B., Zhang, W., Chao, J., Zhang, T., Zhao, T., Noctor, G., Liu, Y., Han, Y., 2017. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci. Rep. 7, 2615
|
Wei, M., Liu, J., Li, H., Hu, W., Shen, Z., Qiao, F., Zhu, C., Chen, J., Liu, X., Zheng, H., 2021. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide. 111-112, 14-30
|
Winterbourn C. C., 2013. The biological chemistry of hydrogen peroxide. Methods Enzymol. 528:3-25
|
Winterbourn, C. C., Metodiewa, D., 1994. The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys. 314(2), 284-290
|
Yang, H., Mu, J., Chen, L., Feng, J., Hu, J., Li, L., Zhou, J., Zuo, J., 2015. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol. 167, 1604-1615
|
Yun, B., Feechan, A., Yin, M., Saidi, N. B., Le Bihan, T., Yu, M., Moore, J. W., Kang, J., Kwon, E., Spoel, S. H., et al., 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368), 264-268
|
Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., et al., 2018. S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol. Cell. 71(1), 142-154
|
Zhang, D., Macinkovic, I., Devarie-Baez, N. O., Pan, J., Park, C. M., Carroll, K. S., Filipovic, M. R., Xian, M., 2014. Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem. Int. Ed. Engl. 53(2), 575-581
|
Zhang, H., Tang, J., Liu, X., Wang, Y., Yu, W., Peng, W., Fang, F., Ma, D., Wei, Z., Hu, L., 2009. Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J. Integr. Plant Biol. 51(12), 1086-1094
|
Zhang, J., Zhou, M., Ge, Z., Shen, J., Zhou, C., Gotor, C., Romero, L. C., Duan, X., Liu, X., Wu, D., et al., 2020a. Abscisic acid-triggered guard cell L-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. Plant Cell Environ. 43(3), 624-636
|
Zhang, J., Zhou, M., Zhou, H., Zhao, D., Gotor, C., Romero, L. C., Shen, J., Ge, Z., Zhang, Z., Shen, W., et al., 2021. Hydrogen sulfide, a signaling molecule in plant stress responses. J. Integr. Plant Biol. 63(1), 146-160
|
Zhang, N., Zou, H., Lin, X., Pan, Q., Zhang, W., Zhang, J., Wei, G., Shangguan, Z., Chen, J., 2020b. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean. Plant Cell Environ. 43(5), 1130-1147
|
Zhang, Q., Cai, W., Ji, T., Ye, L., Lu, Y., Yuan, T., 2020c. WRKY13 enhances cadmium tolerance by promoting D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production. Plant Physiol. 183(1), 345-357
|
Zhang, T., Ma, M., Chen, T., Zhang, L., Fan, L., Zhang, W., Wei, B., Li, S., Xuan, W., Noctor, G., et al., 2020d. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H2O2. Plant Cell Environ. 43, 1175-1191
|
Zhang, X., Liu, F., Zhai, J., Li, F., Bi, H., Ai, X., 2020e. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251, 69
|
Zhao, D., Zhang, J., Zhou, M., Zhou, H., Gotor, C., Romero, L. C., Shen, J., Yuan, X., Xie, Y., 2020a. Current approaches for detection of hydrogen sulfide and persulfidation in biological systems. Plant Physiol. Biochem. 155, 367-373
|
Zhao, M., Liu, Q., Zhang, Y., Yang, N., Wu, G., Li, Q., Wang, W., 2020b. Alleviation of osmotic stress by H2S is related to regulated PLDα1 and suppressed ROS in Arabidopsis thaliana. J. Plant Res. 133(3), 393-407
|