5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 4
Apr.  2022
Turn off MathJax
Article Contents

The S100 calcium binding protein A11 promotes liver fibrogenesis by targeting TGF-β signaling

doi: 10.1016/j.jgg.2022.02.013
Funds:

This work was supported by the National Natural Science Foundation of China (U1702288, 81700520, U1702287, 31671230, 91857113, 31860323, 32000818), the Yunnan Applied Basic Research Projects (2019FY003021, 2017FA007, 2018FB117, 202101AT070009), the Ministry of Science and Technology of the People's Republic of China (2018YFA0800700), the Yunnan Province Innovation Team of Intestinal Microecology-Related Disease Research and Technological Transformation (202005AE160010).

  • Received Date: 2021-12-25
  • Accepted Date: 2022-02-22
  • Rev Recd Date: 2022-02-22
  • Publish Date: 2022-04-30
  • Liver fibrosis is a key transformation stage and also a reversible pathological process in various types of chronic liver diseases. However, the pathogenesis of liver fibrosis still remains elusive. Here, we report that the calcium binding protein A11 (S100A11) is consistently upregulated in the integrated data from GSE liver fibrosis and tree shrew liver proteomics. S100A11 is also experimentally activated in liver fibrosis in mouse, rat, tree shrew, and human with liver fibrosis. While overexpression of S100A11 in vivo and in vitro exacerbates liver fibrosis, the inhibition of S100A11 improves liver fibrosis. Mechanistically, S100A11 activates hepatic stellate cells (HSCs) and the fibrogenesis process via the regulation of the deacetylation of Smad3 in the TGF-β signaling pathway. S100A11 physically interacts with SIRT6, a deacetylase of Smad2/3, which may competitively inhibit the interaction between SIRT6 and Smad2/3. The subsequent release and activation of Smad2/3 promote the activation of HSCs and fibrogenesis. Additionally, a significant elevation of S100A11 in serum is observed in clinical patients. Our study uncovers S100A11 as a novel profibrogenic factor in liver fibrosis, which may represent both a potential biomarker and a promising therapy target for treating liver fibrosis and fibrosis-related liver diseases.
  • loading
  • Allen, B.G., Walsh, M.P., Durussel, I., Cox, J.A., 1996. Characterization of the Ca2+-binding properties of calgizzarin (S100C) isolated from chicken gizzard smooth muscle. Biochem. Cell. Biol. 74, 687-694
    Andres Cerezo, L., Hulejova, H., Sumova, B., Kropackova, T., Krystufkova, O., Klein, M., Mann, H.F., Zamecnik, J., Pecha, O., Pavelka, K., et al., 2019. Pro-inflammatory S100A11 is elevated in inflammatory myopathies and reflects disease activity and extramuscular manifestations in myositis. Cytokine 116, 13-20
    Arrese, M., Hernandez, A., Astete, L., Estrada, L., Cabello-Verrugio, C., Daniel, C., 2018. TGF-β and hepatocellular carcinoma: when a friend becomes an enemy. Curr. Protein Pept. Sci. 19, 1172–1179
    Arthur, M.J., 2002. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122, 1525-1528
    Bataller, R., Brenner, D.A., 2001. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin. Liver Dis. 21, 437-451
    Bataller, R., Brenner, D.A., 2005. Liver fibrosis. J. Clin. Invest. 115, 209-218
    Bedossa, P., Peltier, E., Terris, B., Franco, D., Poynard, T., 1995. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21, 760-766
    Caballeria, L., Pera, G., Arteaga, I., Rodriguez, L., Aluma, A., Morillas, R.M., de la Ossa, N., Diaz, A., Exposito, C., Miranda, D., et al., 2018. High prevalence of liver fibrosis among European adults with unknown liver disease: a population-based study. Clin. Gastroenterol. Hepatol. 16, 1138-1145.e5
    Cecil, D.L., Johnson, K., Rediske, J., Lotz, M., Schmidt, A.M., Terkeltaub, R., 2005. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 175, 8296-8302
    Chalasani, N., Abdelmalek, M.F., Garcia-Tsao, G., Vuppalanchi, R., Traber, P.G., 2019. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158, 1334-1345.e5
    Cui, A., Ding, D., Li, Y., 2021. Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors. Diabetes 70, 653-664
    Donato, R., 2001. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33, 637-668
    Donghee, K., Li, A.A., Chiranjeevi, G., Ali, K.M., George, C., Glenn, J.S., Aijaz, A., 2018. Changing trends in etiology-based annual mortality from chronic liver disease, From 2007 Through 2016. Gastroenterology 155, 1154-1163.e3
    Fransvea, E., Angelotti, U.F., Antonaci, S., Giannelli, G., 2008. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47, 1557-1566
    Friedman, S.L., 2003. Liver fibrosis--from bench to bedside. J. Hepatol. 38, S38-S53
    Gong, X.M., Li, Y.F., Luo, J., Wang, J.Q., Wei, J., Wang, J.Q., Xiao, T., Xie, C., Hong, J., Ning, G., et al., 2019. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nat. Metab. 1, 570-583
    Gorrell, M.D., 2007. Liver fibrosis: the hepatocyte revisited. Hepatology 46, 1659-1661
    Gressner, A.M., Weiskirchen, R., 2006. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J. Cell Mol. Med. 10, 76-99
    Hernandezgea, V., Friedman, S.L., 2011. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6, 425-456
    Inoue, Y., Itoh, Y., Abe, K., Okamoto, T., Daitoku, H., Fukamizu, A., Onozaki, K., Hayashi, H., 2007. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26, 500-508
    Jessica, E.S., Shay, James, P. Hamilton, 2018. Hepatic fibrosis: avenues of investigation and clinical implications. Clin. Liver Dis. 11, 111-114
    Laia, C., Francesco, D., Serena, M., Daniel, C.D., Aristidis, M., Gianluigi, G., Isabel, F., 2018. TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int. J. Mol. Sci. 19, 1294
    Lanaya, H., Natarajan, A., Komposch, K., Li, L., Amberg, N., Chen, L., Wculek, S.K., Hammer, M., Zenz, R., Peck-Radosavljevic, M., et al., 2014. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat. Cell Biol. 16, 972-977
    Larter, C.Z., Yeh, M.M., 2008. Animal models of NASH: getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 23, 1635-1648
    Li, J., Qu, X., Ricardo, S.D., Bertram, J.F., Nikolic-Paterson, D.J., 2010. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am. J. Pathol. 177, 1065-1071
    Lim, Y.S., Kim, W.R., 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis. 12, 733-746, vii
    Luo, X., Xie, H., Long, X., Zhou, M., Xu, Z., Shi, B., Jiang, H., Li, Z., 2013. EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression. PLoS One 8, e83332
    Maity, S., Muhamed, J., Sarikhani, M., Kumar, S., Ahamed, F., Spurthi, K.M., Ravi, V., Jain, A., Khan, D., Arathi, B.P., et al., 2020. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem. 295, 415-434
    Martinez-Martinez, E., Ibarrola, J., Lachen-Montes, M., Fernandez-Celis, A., Jaisser, F., Santamaria, E., Fernandez-Irigoyen, J., Lopez-Andres, N., 2017. Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts. J. Proteonomics. 166, 93-100
    Oh, H.Y., Shin, S.K., Heo, H.S., Ahn, J.S., Kwon, E.Y., Park, J.H., Cho, Y.Y., Park, H.J., Lee, M.K., Kim, E.J., et al., 2013. Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis. Genes Nutr. 8, 301-316
    Popov, Y., Schuppan, D., 2009. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology 50, 1294-1306
    Safronova, A., Araujo, A., Camanzo, E., Moon, T.J., Elliott, M.R., Beiting, D.P., Yarovinsky, F., 2019. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat. Immunol. 20, 64-72
    Saho, S., Satoh, H., Kondo, E., Inoue, Y., Yamauchi, A., Murata, H., Kinoshita, R., Yamamoto, K., Futami, J., Putranto, E.W., et al., 2016. Active secretion of dimerized S100A11 induced by the peroxisome in mesothelioma cells. Cancer Microenviron. 9, 93-105
    Sakaguchi, M., Sonegawa, H., Murata, H., Kitazoe, M., Futami, J., Kataoka, K., Yamada, H., Huh, N., 2008. S100A11, an dual mediator for growth regulation of human keratinocytes. Mol. Biol. Cell 19, 78-85
    Senturk, S., Mumcuoglu, M., Gursoyyuzugullu, O., Cingoz, B., Akcali, K.C., Ozturk, M., 2010. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52, 966-974
    Shang, X., Cheng, H., Zhou, R., 2008. Chromosomal mapping, differential origin and evolution of theS100gene family. Genet. Sel. Evol. 40, 449
    Simonsson, M., Kanduri, M., Gronroos, E., Heldin, C.H., Ericsson, J., 2006. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J. Biol. Chem. 281, 39870-39880
    Sobolewski, C., Abegg, D., Berthou, F., Dolicka, D., Calo, N., Sempoux, C., Fournier, M., Maeder, C., Ay, A.S., Clavien, P.A., et al., 2020. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut 69, 1841-1854
    Teng, F., Jiang, J., Zhang, J., Yuan, Y., Li, K., Zhou, B., Zhou, X., Liu, W., Zhang, P., Liu, D., et al., 2021. The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling. Metabolism 117, 154725
    Teratani, T., Tomita, K., Furuhashi, H., Sugihara, N., Higashiyama, M., Nishikawa, M., Irie, R., Takajo, T., Wada, A., Horiuchi, K., et al., 2019. Lipoprotein lipase up-regulation in hepatic stellate cells exacerbates liver fibrosis in nonalcoholic steatohepatitis in mice. Hepatol. Commun. 3, 1098-1112
    Xu, M., Xu, H.H., Lin, Y., Sun, X., Wang, L.J., Fang, Z.P., Su, X.H., Liang, X.J., Hu, Y., Liu, Z.M., et al., 2019. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 178, 1478-1492.e20
    Yang, M., Wang, C., Li, S., Xv, X., She, S., Ran, X., Li, S., Hu, H., Hu, P., Zhang, D., et al., 2017. Annexin A2 promotes liver fibrosis by mediating von Willebrand factor secretion. Dig. Liver Dis. 49, 780-788
    Yanguas, S.C., Cogliati, B., Willebrords, J., Maes, M., Colle, I., van den Bossche, B., de Oliveira, C., Andraus, W., Alves, V.A.F., Leclercq, I., et al., 2016. Experimental models of liver fibrosis. Arch. Toxicol. 90, 1025-1048
    Zhang, J., Li, Y., Liu, Q., Huang, Y., Li, R., Wu, T., Zhang, Z., Zhou, J., Huang, H., Tang, Q., et al., 2021a. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells. Hepatology 73, 1140-1157
    Zhang, L., Zhang, Z., Li, Y., Liao, S., Wu, X., Chang, Q., Liang, B., 2015. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci. Rep. 5, 15970
    Zhang, L., Zhu, T., Miao, H., Liang, B., 2021b. The calcium binding protein S100A11 and its roles in diseases. Front. Cell Dev. Biol. 9, 693262
    Zhang, L., Zhang, Z.G., Li, C.B., Zhu, T.T., Gao, J., Zhou, H., Zheng, Y.Z., Chang, Q., Wang, M.S., Wu, J.Y., et al., 2021c. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis. Cell Mol. Gastroenterol. Hepatol. 11, 697-724
    Zhao, Y., Shi, X., Ding, C., Feng, D., Li, Y., Hu, Y., Wang, L., Gao, D., Tian, X., Yao, J., 2018. Carnosic acid prevents COL1A2 transcription through the reduction of Smad3 acetylation via the AMPKα1/SIRT1 pathway. Toxicol. Appl. Pharmacol. 339, 172-180
    Zhong, X., Huang, M., Kim, H.G., Zhang, Y., Chowdhury, K., Cai, W., Saxena, R., Schwabe, R.F., Liangpunsakul, S., Dong, X.C., 2020. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell Mol. Gastroenterol. Hepatol. 10, 341-364
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads (17) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return