5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Deletion of CHD8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia, and psychiatric behavior in mice

doi: 10.1016/j.jgg.2022.02.011
Funds:

We appreciated the patient and the family for their willingness and cooperation in the study. Thanks for the efforts of many colleagues and staff. Thanks for Qing Richard Lu lab (Cincinnati Children's Hospital Medical Center, USA) providing invaluable support for this study. Thanks for support by grants from the Science and Technology Commission of Shanghai Municipality (19411964400, 20ZR1408400), National Natural Science Foundation of China (81741034, 81720108018), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01, 2018SHZDZX05) and ZJLab.

  • Received Date: 2021-12-02
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-02-13
  • Publish Date: 2022-02-26
  • CHD8 is a candidate gene for autism spectrum disorders and neurological development delay. It has been reported to be essential for neurogenesis in the cerebral cortex, but the function of CHD8 in cerebellum has not been comprehensively investigated. The potential relationship of cerebellum dysplasia with psychiatric disorders in patients with CHD8 mutations is still not clear. In this study, we establish different conditional knockout mouse models to investigate the roles of CHD8 in cerebellar development. Mice with neural stem cell-specific Chd8 deletion exhibit significant reduction of cerebellum volume and no layering structure is detected. Genetic deletion of Chd8 in cerebellar granule neuron progenitors (GNPs) leads to cerebellar hypoplasia, absent of proliferation layer and ectopic of Purkinje neuron. However, no substantial cerebellar dysplasia is detected in mice with Purkinje neuron- or oligodendrocyte-specific Chd8 ablation. Single-cell RNA sequencing indicates that ribosome-related genes and pathways are most significantly disrupted in GNPs, indicating the potential mechanism. Importantly, in addition to the ataxia phenotype, mice with GNP-specific Chd8 ablation present a neuropsychiatric phenotype in three-chamber and light/dark tests. Taken together, our results provide insights not only into the function of CHD8 in cerebellar development, but also the pathogenesis of neuropsychiatric disorders in patients with CHD8 mutations.
  • loading
  • Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F.,Newell, E.W., 2018. Dimensionality reduction for visualizing single-cell data using umap. Nat. Biotechnol.
    Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C.A.,Zoghbi, H.Y., 2009. Mouse models of mecp2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431-2442.
    Bernier, R., Golzio, C., Xiong, B., Stessman, H.A., Coe, B.P., Penn, O., Witherspoon, K., Gerdts, J., Baker, C., Vulto-van Silfhout, A.T., et al., 2014. Disruptive chd8 mutations define a subtype of autism early in development. Cell 158, 263-276.
    Buckner, R.L., 2013. The cerebellum and cognitive function:25 years of insight from anatomy and neuroimaging. Neuron 80, 807-815.
    Butts, T., Green, M.J.,Wingate, R.J., 2014. Development of the cerebellum:simple steps to make a'little brain'. Development (Cambridge, England)141, 4031-4041.
    Carta, I., Chen, C.H., Schott, A.L., Dorizan, S.,Khodakhah, K., 2019. Cerebellar modulation of the reward circuitry and social behavior. Science 363.
    Cerrato, V., Mercurio, S., Leto, K., Fuca, E., Hoxha, E., Bottes, S., Pagin, M., Milanese, M., Ngan, C.Y., Concina, G., et al., 2018. Sox2 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and postnatal defects of bergmann glia. Glia 66, 1929-1946.
    Choi, H., Kim, C., Song, H., Cha, M.Y., Cho, H.J., Son, S.M., Kim, H.J.,Mook-Jung, I., 2019. Amyloid β-induced elevation of o-glcnacylated c-fos promotes neuronal cell death. Aging Cell 18, e12872.
    Christensen, D., Van Naarden Braun, K., Doernberg, N.S., Maenner, M.J., Arneson, C.L., Durkin, M.S., Benedict, R.E., Kirby, R.S., Wingate, M.S., Fitzgerald, R., et al., 2014. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning-autism and developmental disabilities monitoring network, USA, 2008. Dev. Med. Child Neurol. 56, 59-65.
    Ciarapica, R., Methot, L., Tang, Y., Lo, R., Dali, R., Buscarlet, M., Locatelli, F., del Sal, G., Rota, R.,Stifani, S., 2014. Prolyl isomerase pin1 and protein kinase hipk2 cooperate to promote cortical neurogenesis by suppressing groucho/tle:Hes1-mediated inhibition of neuronal differentiation. Cell Death Differ. 21, 321-332.
    Cotney, J., Muhle, R.A., Sanders, S.J., Liu, L., Willsey, A.J., Niu, W., Liu, W., Klei, L., Lei, J., Yin, J., et al., 2015. The autism-associated chromatin modifier chd8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404.
    Courchesne, E., Yeung-Courchesne, R., Press, G.A., Hesselink, J.R.,Jernigan, T.L., 1988. Hypoplasia of cerebellar vermal lobules vi and vii in autism. N. Engl. J. Med. 318, 1349-1354.
    D'Angelo, E., 2018. Physiology of the cerebellum. Handb. Clin. Neurol. 154, 85-108.
    Doi, H., Matsuda, T., Sakai, A., Matsubara, S., Hoka, S., Yamaura, K.,Nakashima, K., 2021. Early-life Midazolam Exposure Persistently Changes Chromatin Accessibility to Impair Adult Hippocampal Neurogenesis and Cognition. Proceedings of the National Academy of Sciences of the United States of America vol. 118.
    Durak, O., Gao, F., Kaeser-Woo, Y.J., Rueda, R., Martorell, A.J., Nott, A., Liu, C.Y., Watson, L.A.,Tsai, L.H., 2016. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and wnt signaling. Nat. Neurosci. 19, 1477-1488.
    Espinosa, J.S.,Luo, L., 2008. Timing neurogenesis and differentiation:insights from quantitative clonal analyses of cerebellar granule cells. J. Neurosci.:the official journal of the Society for Neuroscience 28, 2301-2312.
    Frye, R.E., 2018. Social skills deficits in autism spectrum disorder:potential biological origins and progress in developing therapeutic agents. CNS Drugs 32, 713-734.
    Galliano, E., Gao, Z., Schonewille, M., Todorov, B., Simons, E., Pop, A.S., D'Angelo, E., van den Maagdenberg, A.M., Hoebeek, F.E.,De Zeeuw, C.I., 2013. Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep. 3, 1239-1251.
    Gompers, A.L., Su-Feher, L., Ellegood, J., Copping, N.A., Riyadh, M.A., Stradleigh, T.W., Pride, M.C., Schaffler, M.D., Wade, A.A., Catta-Preta, R., et al., 2017. Germline chd8 haploinsufficiency alters brain development in mouse. Nat. Neurosci. 20, 1062-1073.
    Ha, S., Lee, D., Cho, Y.S., Chung, C., Yoo, Y.E., Kim, J., Lee, J., Kim, W., Kim, H., Bae, Y.C., et al., 2016. Cerebellar shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. J. Neurosci.:the official journal of the Society for Neuroscience 36, 12129-12143.
    He, L., Yu, K., Lu, F., Wang, J., Wu, L.N., Zhao, C., Li, Q., Zhou, X., Liu, H., Mu, D., et al., 2018. Transcriptional regulator zeb2 is essential for bergmann glia development. J. Neurosci.:the official journal of the Society for Neuroscience 38, 1575-1587.
    Huang, W., Huang, T., Liu, Y., Fu, J., Wei, X., Liu, D., Ma, W., Gu, H.,Yuan, Z., 2021. Nuclear factor i-c disrupts cellular homeostasis between autophagy and apoptosis via mir-200b-ambra1 in neural tube defects. Cell Death Dis. 13, 17.
    Ito, M., 1984. The modifiable neuronal network of the cerebellum. Jpn. J. Physiol. 34, 781-792.
    James, A.B., Conway, A.M.,Morris, B.J., 2006. Regulation of the neuronal proteasome by zif268(egr1). J. Neurosci.:the official journal of the Society for Neuroscience 26, 1624-1634.
    Ju, J., Liu, Q., Zhang, Y., Liu, Y., Jiang, M., Zhang, L., He, X., Peng, C., Zheng, T., Lu, Q.R., et al., 2016. Olig2 regulates purkinje cell generation in the early developing mouse cerebellum. Sci. Rep. 6, 30711.
    Jung, H., Park, H., Choi, Y., Kang, H., Lee, E., Kweon, H., Roh, J.D., Ellegood, J., Choi, W., Kang, J., et al., 2018. Sexually dimorphic behavior, neuronal activity, and gene expression in chd8-mutant mice. Nat. Neurosci. 21, 1218-1228.
    Kasah, S., Oddy, C.,Basson, M.A., 2018. Autism-linked chd gene expression patterns during development predict multi-organ disease phenotypes. J. Anat. 233, 755-769.
    Katayama, Y., Nishiyama, M., Shoji, H., Ohkawa, Y., Kawamura, A., Sato, T., Suyama, M., Takumi, T., Miyakawa, T.,Nakayama, K.I., 2016. Chd8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537, 675-679.
    Kawamura, A., Katayama, Y., Kakegawa, W., Ino, D., Nishiyama, M., Yuzaki, M.,Nakayama, K.I., 2021. The autism-associated protein chd8 is required for cerebellar development and motor function. Cell Rep. 35, 108932.
    Kloth, A.D., Badura, A., Li, A., Cherskov, A., Connolly, S.G., Giovannucci, A., Bangash, M.A., Grasselli, G., Penagarikano, O., Piochon, C., et al., 2015. Cerebellar associative sensory learning defects in five mouse autism models. Elife 4, e06085.
    Kulesskaya, N.,Voikar, V., 2014. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena:role of equipment and procedure. Physiol. Behav. 133, 30-38.
    Kweon, H., Jung, W.B., Im, G.H., Ryoo, J., Lee, J.H., Do, H., Choi, Y., Song, Y.H., Jung, H., Park, H., et al., 2021. Excitatory neuronal chd8 in the regulation of neocortical development and sensory-motor behaviors. Cell Rep. 34, 108780.
    Leung, A.W.,Li, J.Y.H., 2018. The molecular pathway regulating bergmann glia and folia generation in the cerebellum. Cerebellum 17, 42-48.
    Lossi, L., Castagna, C.,Merighi, A., 2018. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int. J. Mol. Sci. 19.
    Marzban, H., Del Bigio, M.R., Alizadeh, J., Ghavami, S., Zachariah, R.M.,Rastegar, M., 2014. Cellular commitment in the developing cerebellum. Front. Cell. Neurosci. 8, 450.
    Merner, N., Forgeot d'Arc, B., Bell, S.C., Maussion, G., Peng, H., Gauthier, J., Crapper, L., Hamdan, F.F., Michaud, J.L., Mottron, L., et al., 2016. A de novo frameshift mutation in chromodomain helicase DNA-binding domain 8(chd8):a case report and literature review. Am. J. Med. Genet. 170a, 1225-1235.
    Miyashita, S., Owa, T., Seto, Y., Yamashita, M., Aida, S., Sone, M., Ichijo, K., Nishioka, T., Kaibuchi, K., Kawaguchi, Y., et al., 2021. Cyclin d1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of atoh1. EMBO J. 40, e105712.
    Nishiyama, M., Skoultchi, A.I.,Nakayama, K.I., 2012. Histone h1 recruitment by chd8 is essential for suppression of the wnt-β-catenin signaling pathway. Mol. Cell Biol. 32, 501-512.
    Pagin, M., Pernebrink, M., Pitasi, M., Malighetti, F., Ngan, C.Y., Ottolenghi, S., Pavesi, G., Cantu, C.,Nicolis, S.K., 2021. Fos rescues neuronal differentiation of sox2-deleted neural stem cells by genome-wide regulation of common sox2 and ap1(fos-jun) target genes. Cells 10.
    Pei, Y., Brun, S.N., Markant, S.L., Lento, W., Gibson, P., Taketo, M.M., Giovannini, M., Gilbertson, R.J.,Wechsler-Reya, R.J., 2012. Wnt signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development (Cambridge, England)139, 1724-1733.
    Peter, S., Ten Brinke, M.M., Stedehouder, J., Reinelt, C.M., Wu, B., Zhou, H., Zhou, K., Boele, H.J., Kushner, S.A., Lee, M.G., et al., 2016. Dysfunctional cerebellar purkinje cells contribute to autism-like behaviour in shank2-deficient mice. Nat. Commun. 7, 12627.
    Pfeuty, B., 2015. A computational model for the coordination of neural progenitor self-renewal and differentiation through hes1 dynamics. Development (Cambridge, England)142, 477-485.
    Piochon, C., Kloth, A.D., Grasselli, G., Titley, H.K., Nakayama, H., Hashimoto, K., Wan, V., Simmons, D.H., Eissa, T., Nakatani, J., et al., 2014. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat. Commun. 5, 5586.
    Ponti, D., Bellenchi, G.C., Puca, R., Bastianelli, D., Maroder, M., Ragona, G., Roussel, P., Thiry, M., Mercola, D.,Calogero, A., 2014. The transcription factor egr1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis. PLoS One 9, e96037.
    Qin, L., Ma, K., Wang, Z.J., Hu, Z., Matas, E., Wei, J.,Yan, Z., 2018. Social deficits in shank3-deficient mouse models of autism are rescued by histone deacetylase (hdac) inhibition. Nat. Neurosci. 21, 564-575.
    Rada-Iglesias, A., Bajpai, R., Prescott, S., Brugmann, S.A., Swigut, T.,Wysocka, J., 2012. Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 11, 633-648.
    Rogers, T.D., Dickson, P.E., McKimm, E., Heck, D.H., Goldowitz, D., Blaha, C.D.,Mittleman, G., 2013. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12, 547-556.
    Sajdel-Sulkowska, E.M., Xu, M.,Koibuchi, N., 2009. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8, 366-372.
    Sanchez-Ortiz, E., Cho, W., Nazarenko, I., Mo, W., Chen, J.,Parada, L.F., 2014. Nf1 regulation of ras/erk signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development. Gene Dev. 28, 2407-2420.
    Schmahmann, J.D., Weilburg, J.B.,Sherman, J.C., 2007. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum 6, 254-267.
    Schonewille, M., Girasole, A.E., Rostaing, P., Mailhes-Hamon, C., Ayon, A., Nelson, A.B., Triller, A., Casado, M., De Zeeuw, C.I.,Bouvier, G., 2021. Nmdars in Granule Cells Contribute to Parallel Fiber-Purkinje Cell Synaptic Plasticity and Motor Learning. Proceedings of the National Academy of Sciences of the United States of America vol. 118.
    Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., et al., 2017. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515-526.
    Stoodley, C.J., 2016. The cerebellum and neurodevelopmental disorders. Cerebellum 15, 34-37.
    Suetterlin, P., Hurley, S., Mohan, C., Riegman, K.L.H., Pagani, M., Caruso, A., Ellegood, J., Galbusera, A., Crespo-Enriquez, I., Michetti, C., et al., 2018. Altered neocortical gene expression, brain overgrowth and functional over-connectivity in chd8 haploinsufficient mice. Cerebr. Cortex 28, 2192-2206.
    Sun, Z., Xu, X., He, J., Murray, A., Sun, M.A., Wei, X., Wang, X., McCoig, E., Xie, E., Jiang, X., et al., 2019. Egr1 recruits tet1 to shape the brain methylome during development and upon neuronal activity. Nat. Commun. 10, 3892.
    Tsai, P.T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A.R., Leech, J.M., Steinberg, J., Crawley, J.N., Regehr, W.G.,Sahin, M., 2012. Autistic-like behaviour and cerebellar dysfunction in purkinje cell tsc1 mutant mice. Nature 488, 647-651.
    Wang, S.S., Kloth, A.D.,Badura, A., 2014a. The cerebellum, sensitive periods, and autism. Neuron 83, 518-532.
    Wang, V.Y.,Zoghbi, H.Y., 2001. Genetic regulation of cerebellar development. Nat. Rev. Neurosci. 2, 484-491.
    Wang, W., Liu, J.,Zhou, X., 2014b. Identification of single-stranded and double-stranded DNA binding proteins based on protein structure. BMC Bioinf. 15 Suppl.12, S4.
    Wechsler-Reya, R.J.,Scott, M.P., 1999. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22, 103-114.
    Xin, M., Yue, T., Ma, Z., Wu, F.F., Gow, A.,Lu, Q.R., 2005. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in olig1-null mice. J. Neurosci.:the official journal of the Society for Neuroscience 25, 1354-1365.
    Xu, H., Yang, Y., Tang, X., Zhao, M., Liang, F., Xu, P., Hou, B., Xing, Y., Bao, X.,Fan, X., 2013. Bergmann glia function in granule cell migration during cerebellum development. Mol. Neurobiol. 47, 833-844.
    Xu, Q., Liu, Y.Y., Wang, X., Tan, G.H., Li, H.P., Hulbert, S.W., Li, C.Y., Hu, C.C., Xiong, Z.Q., Xu, X., et al., 2018. Autism-associated chd8 deficiency impairs axon development and migration of cortical neurons. Mol. Autism. 9, 65.
    Yamada, K.,Watanabe, M., 2002. Cytodifferentiation of bergmann glia and its relationship with purkinje cells. Anat. Sci. Int. 77, 94-108.
    Zhang, P., Ha, T., Larouche, M., Swanson, D.,Goldowitz, D., 2015. Kruppel-like factor 4 regulates granule cell pax6 expression and cell proliferation in early cerebellar development. PLoS One 10, e0134390.
    Zhao, C., Dong, C., Frah, M., Deng, Y., Marie, C., Zhang, F., Xu, L., Ma, Z., Dong, X., Lin, Y., et al., 2018. Dual requirement of chd8 for chromatin landscape establishment and histone methyltransferase recruitment to promote cns myelination and repair. Dev. Cell 45, 753-768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (285) PDF downloads (12) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return