5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

The shikimate pathway regulates programmed cell death

doi: 10.1016/j.jgg.2022.02.001
Funds:

Technological Self-innovation Foundation (2014RC004).

We thank Dr. Ting Pan for the helpful discussion and Dr. Lianghuan Qu for the help in metabolic analysis. This work was supported by grants from the National Natural Science Foundation of China (31771355 and 31970311), Thousand Talents Plan of China-Young Professionals, and Huazhong Agricultural University Scientific &

  • Received Date: 2022-01-24
  • Accepted Date: 2022-02-02
  • Rev Recd Date: 2022-01-28
  • Publish Date: 2022-02-12
  • Programmed cell death (PCD) is essential for both plant development and stress responses including immunity. However, how plants control PCD is not well-understood. The shikimate pathway is one of the most important metabolic pathways in plants, but its relationship to PCD is unknown. Here, we show that the shikimate pathway promotes PCD in Arabidopsis. We identify a photoperiod-dependent lesion-mimic mutant named Lesion in short-day (lis), which forms spontaneous lesions in short-day conditions. Map-based cloning and whole-genome resequencing reveal that LIS encodes MEE32, a bifunctional enzyme in the shikimate pathway. Metabolic analysis shows that the level of shikimate is dramatically increased in lis. Through genetic screenings, three suppressors of lis (slis) are identified and the causal genes are cloned. SLISes encode proteins upstream of MEE32 in the shikimate pathway. Furthermore, exogenous shikimate treatment causes PCD. Our study uncovers a link between the shikimate pathway and PCD, and suggests that the accumulation of shikimate is an alternative explanation for the action of glyphosate, the most successful herbicide.
  • loading
  • Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., et al., 2012. Genome sequencing reveals agronomically important loci in rice using mutmap. Nat. Biotechnol. 30, 174-178
    Benbrook, C.M., 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3
    Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541 e3512
    Bruggeman, Q., Raynaud, C., Benhamed, M., Delarue, M., 2015. To die or not to die? Lessons from lesion mimic mutants. Front. Plant Sci. 6, 24
    Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63
    Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., Yu, S., Xiong, L., Luo, J., 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites:application in the study of rice metabolomics. Mol. Plant 6, 1769-1780
    Cho, Y.H., Yoo, S.D., Sheen, J., 2006. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579-589
    Coll, N.S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J.L., Epple, P., 2010. Arabidopsis type I metacaspases control cell death. Science 330, 1393-1397
    Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A., Dangl, J.L., 1994. Arabidopsis mutants simulating disease resistance response. Cell 77, 565-577
    Duke, S.O., Powles, S.B., 2008. Glyphosate:a once-in-a-century herbicide. Pest Manag. Sci. 64, 319-325
    Eremina, M., Rozhon, W., Yang, S., Poppenberger, B., 2015. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J. 81, 895-906
    Gout, E., Bligny, R., Genix, P., Tissut, M., Douce, R., 1992. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies. Biochimie 74, 875-882
    Huang, X.X., Zhu, G.Q., Liu, Q., Chen, L., Li, Y.J., Hou, B.K., 2018. Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. Plant Physiol. 176, 3103-3119
    Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant "helper" immune receptors are Ca(2+)-permeable nonselective cation channels. Science 373, 420-425
    Jones, J.D., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329
    Jones, K., Kim, D.W., Park, J.S., Khang, C.H., 2016. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus magnaporthe oryzae. BMC Plant Biol. 16, 69
    Kaurilind, E., Xu, E., Brosche, M., 2015. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genom. 16, 837
    Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT -genotype. Nat. Biotechnol. 37, 907-915
    Knappe, S., Lottgert, T., Schneider, A., Voll, L., Flugge, U.I., Fischer, K., 2003. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis——AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J. 36, 411-420
    Landoni, M., De Francesco, A., Bellatti, S., Delledonne, M., Ferrarini, A., Venturini, L., Pilu, R., Bononi, M., Tonelli, C., 2013. A mutation in the FZL gene of Arabidopsis causing alteration in chloroplast morphology results in a lesion mimic phenotype. J. Exp. Bot. 64, 4313-4328
    Lorrain, S., 2003. Lesion mimic mutants:keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263-271
    Lukowitz, W., Gillmor, C.S., Scheible, W.R., 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123, 795-805
    Lv, R., Li, Z., Li, M., Dogra, V., Lv, S., Liu, R., Lee, K.P., Kim, C., 2019. Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant. Plant Cel 31, 210-230
    Ma, L., Tian, T., Lin, R., Deng, X.W., Wang, H., Li, G., 2016. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant 9, 541-557
    Maeda, H., Dudareva, N., 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73-105
    Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.D., Yu, K., Zhu, S., Chanda, B., Navarre, D., Kachroo, A., Kachroo, P., 2012. Oleic acid-dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis. Plant Cell 24, 1654-1674
    Meng, P.H., Raynaud, C., Tcherkez, G., Blanchet, S., Massoud, K., Domenichini, S., Henry, Y., Soubigou-Taconnat, L., Lelarge-Trouverie, C., Saindrenan, P., et al., 2009. Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS One. 4, e7364
    op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., et al., 2003. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320-2332
    Prabhakar, V., Lottgert, T., Gigolashvili, T., Bell, K., Flugge, U.I., Hausler, R.E., 2009. Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 583, 983-991
    Przybyla, D., Gobel, C., Imboden, A., Hamberg, M., Feussner, I., Apel, K., 2008. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J. 54, 236-248
    Radojicic, A., Li, X., Zhang, Y., 2018. Salicylic acid:a double-edged sword for programed cell death in plants. Front. Plant Sci. 9, 1133
    Roos, W.P., Thomas, A.D., Kaina, B., 2016. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20-33
    Schonbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., Kabsch, W., 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. U.S.A. 98, 1376-1380
    Schulz, A., Munder, T., Hollander-Czytko, H., Amrhein, N., 1990. Glyphosate transport and early effects on shikimate metabolism and its compartmentation in sink leaves of tomato and spinach plants. Z. Naturforsch. C Biosci. 45, 529-534
    Shaner, D.L., Nadler-Hassar, T., Henry, W.B., Koger, C.H., 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 53, 769-774
    Singh, S.A., Christendat, D., 2006. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry 45, 7787-7796
    Steinrucken, H.C., Amrhein, N., 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207-1212
    Templeton, G.W., Moorhead, G.B., 2004. A renaissance of metabolite sensing and signaling:from modular domains to riboswitches. Plant Cell 16, 2252-2257
    Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187-1194
    Valandro, F., Menguer, P.K., Cabreira-Cagliari, C., Margis-Pinheiro, M., Cagliari, A., 2020. Programmed cell death (PCD) control in plants:new insights from the Arabidopsis thaliana deathosome. Plant Sci. 299, 110603
    Van Hautegem, T., Waters, A.J., Goodrich, J., Nowack, M.K., 2015. Only in dying, life:programmed cell death during plant development. Trends Plant Sci. 20, 102-113
    Wachsman, G., Modliszewski, J.L., Valdes, M., Benfey, P.N., 2017. A simple pipeline for mapping point mutations. Plant Physiol. 174, 1307-1313
    Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565
    Yan, S., Wang, W., Marques, J., Mohan, R., Saleh, A., Durrant, W.E., Song, J., Dong, X., 2013. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell. 52, 602-610
    Yang, Y., Jin, H., Chen, Y., Lin, W., Wang, C., Chen, Z., Han, N., Bian, H., Zhu, M., Wang, J., 2012. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytol. 193, 81-95
    Zhao, Y., Luo, L., Xu, J., Xin, P., Guo, H., Wu, J., Bai, L., Wang, G., Chu, J., Zuo, J., et al., 2018. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res. 28, 448-461
    Zhi, T., Zhou, Z., Qiu, B., Zhu, Q., Xiong, X.,Ren, C., 2019. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. Plant J. 98, 622-638
    Zulet-Gonzalez, A., Barco-Antonanzas, M., Gil-Monreal, M., Royuela, M., Zabalza, A., 2020. Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci. 11, 459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (300) PDF downloads (41) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return