Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., et al., 2012. Genome sequencing reveals agronomically important loci in rice using mutmap. Nat. Biotechnol. 30, 174-178
|
Benbrook, C.M., 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3
|
Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541 e3512
|
Bruggeman, Q., Raynaud, C., Benhamed, M., Delarue, M., 2015. To die or not to die? Lessons from lesion mimic mutants. Front. Plant Sci. 6, 24
|
Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63
|
Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., Yu, S., Xiong, L., Luo, J., 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites:application in the study of rice metabolomics. Mol. Plant 6, 1769-1780
|
Cho, Y.H., Yoo, S.D., Sheen, J., 2006. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579-589
|
Coll, N.S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J.L., Epple, P., 2010. Arabidopsis type I metacaspases control cell death. Science 330, 1393-1397
|
Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A., Dangl, J.L., 1994. Arabidopsis mutants simulating disease resistance response. Cell 77, 565-577
|
Duke, S.O., Powles, S.B., 2008. Glyphosate:a once-in-a-century herbicide. Pest Manag. Sci. 64, 319-325
|
Eremina, M., Rozhon, W., Yang, S., Poppenberger, B., 2015. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J. 81, 895-906
|
Gout, E., Bligny, R., Genix, P., Tissut, M., Douce, R., 1992. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies. Biochimie 74, 875-882
|
Huang, X.X., Zhu, G.Q., Liu, Q., Chen, L., Li, Y.J., Hou, B.K., 2018. Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. Plant Physiol. 176, 3103-3119
|
Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant "helper" immune receptors are Ca(2+)-permeable nonselective cation channels. Science 373, 420-425
|
Jones, J.D., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329
|
Jones, K., Kim, D.W., Park, J.S., Khang, C.H., 2016. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus magnaporthe oryzae. BMC Plant Biol. 16, 69
|
Kaurilind, E., Xu, E., Brosche, M., 2015. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genom. 16, 837
|
Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT -genotype. Nat. Biotechnol. 37, 907-915
|
Knappe, S., Lottgert, T., Schneider, A., Voll, L., Flugge, U.I., Fischer, K., 2003. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis——AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J. 36, 411-420
|
Landoni, M., De Francesco, A., Bellatti, S., Delledonne, M., Ferrarini, A., Venturini, L., Pilu, R., Bononi, M., Tonelli, C., 2013. A mutation in the FZL gene of Arabidopsis causing alteration in chloroplast morphology results in a lesion mimic phenotype. J. Exp. Bot. 64, 4313-4328
|
Lorrain, S., 2003. Lesion mimic mutants:keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263-271
|
Lukowitz, W., Gillmor, C.S., Scheible, W.R., 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123, 795-805
|
Lv, R., Li, Z., Li, M., Dogra, V., Lv, S., Liu, R., Lee, K.P., Kim, C., 2019. Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant. Plant Cel 31, 210-230
|
Ma, L., Tian, T., Lin, R., Deng, X.W., Wang, H., Li, G., 2016. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant 9, 541-557
|
Maeda, H., Dudareva, N., 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73-105
|
Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.D., Yu, K., Zhu, S., Chanda, B., Navarre, D., Kachroo, A., Kachroo, P., 2012. Oleic acid-dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis. Plant Cell 24, 1654-1674
|
Meng, P.H., Raynaud, C., Tcherkez, G., Blanchet, S., Massoud, K., Domenichini, S., Henry, Y., Soubigou-Taconnat, L., Lelarge-Trouverie, C., Saindrenan, P., et al., 2009. Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS One. 4, e7364
|
op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., et al., 2003. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320-2332
|
Prabhakar, V., Lottgert, T., Gigolashvili, T., Bell, K., Flugge, U.I., Hausler, R.E., 2009. Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 583, 983-991
|
Przybyla, D., Gobel, C., Imboden, A., Hamberg, M., Feussner, I., Apel, K., 2008. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J. 54, 236-248
|
Radojicic, A., Li, X., Zhang, Y., 2018. Salicylic acid:a double-edged sword for programed cell death in plants. Front. Plant Sci. 9, 1133
|
Roos, W.P., Thomas, A.D., Kaina, B., 2016. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20-33
|
Schonbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., Kabsch, W., 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. U.S.A. 98, 1376-1380
|
Schulz, A., Munder, T., Hollander-Czytko, H., Amrhein, N., 1990. Glyphosate transport and early effects on shikimate metabolism and its compartmentation in sink leaves of tomato and spinach plants. Z. Naturforsch. C Biosci. 45, 529-534
|
Shaner, D.L., Nadler-Hassar, T., Henry, W.B., Koger, C.H., 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 53, 769-774
|
Singh, S.A., Christendat, D., 2006. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry 45, 7787-7796
|
Steinrucken, H.C., Amrhein, N., 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207-1212
|
Templeton, G.W., Moorhead, G.B., 2004. A renaissance of metabolite sensing and signaling:from modular domains to riboswitches. Plant Cell 16, 2252-2257
|
Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187-1194
|
Valandro, F., Menguer, P.K., Cabreira-Cagliari, C., Margis-Pinheiro, M., Cagliari, A., 2020. Programmed cell death (PCD) control in plants:new insights from the Arabidopsis thaliana deathosome. Plant Sci. 299, 110603
|
Van Hautegem, T., Waters, A.J., Goodrich, J., Nowack, M.K., 2015. Only in dying, life:programmed cell death during plant development. Trends Plant Sci. 20, 102-113
|
Wachsman, G., Modliszewski, J.L., Valdes, M., Benfey, P.N., 2017. A simple pipeline for mapping point mutations. Plant Physiol. 174, 1307-1313
|
Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565
|
Yan, S., Wang, W., Marques, J., Mohan, R., Saleh, A., Durrant, W.E., Song, J., Dong, X., 2013. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell. 52, 602-610
|
Yang, Y., Jin, H., Chen, Y., Lin, W., Wang, C., Chen, Z., Han, N., Bian, H., Zhu, M., Wang, J., 2012. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytol. 193, 81-95
|
Zhao, Y., Luo, L., Xu, J., Xin, P., Guo, H., Wu, J., Bai, L., Wang, G., Chu, J., Zuo, J., et al., 2018. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res. 28, 448-461
|
Zhi, T., Zhou, Z., Qiu, B., Zhu, Q., Xiong, X.,Ren, C., 2019. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. Plant J. 98, 622-638
|
Zulet-Gonzalez, A., Barco-Antonanzas, M., Gil-Monreal, M., Royuela, M., Zabalza, A., 2020. Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci. 11, 459
|