5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Highly Regional Genes: graph-based gene selection for single-cell RNA-seq data

doi: 10.1016/j.jgg.2022.01.004
Funds:

We address special thanks to the share of single-cell datasets by Hemberg group from the Wellcome Trust Sanger Institute. This work was supported by the National Key Research and Development Program (2020YFA0712403, 2020YFA0906900)

National Natural Science Foundation of China (61922047, 81890993, 61721003, 62133006) and BNRIST Young Innovation Fund (BNR2020RC01009).

  • Received Date: 2021-10-06
  • Accepted Date: 2022-01-25
  • Rev Recd Date: 2022-01-24
  • Publish Date: 2022-02-08
  • Gene selection is an indispensable step for analyzing noisy and high-dimensional single-cell RNA-seq (scRNA-seq) data. Compared with the commonly used variance-based methods, by mimicking the human maker selection in the 2D visualization of cells, a new feature selection method called HRG (Highly Regional Genes) is proposed to find the informative genes, which show regional expression patterns in the cell-cell similarity network. We mathematically find the optimal expression patterns that can maximize the proposed scoring function. In comparison with several unsupervised methods, HRG shows high accuracy and robustness, and can increase the performance of downstream cell clustering and gene correlation analysis. Also, it is applicable for selecting informative genes of sequencing-based spatial transcriptomic data.
  • loading
  • Andrews, T.S.,Hemberg, M., 2019. M3Drop:dropout-based feature selection for scRNASeq. Bioinformatics 35, 2865-2867.
    Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr, S.S.,Klein, A.M., 2016. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems 3, 346-360. e344.
    Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W., Ng, L.G., Ginhoux, F.,Newell, E.W., 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotechnology 37, 38-44.
    Crosetto, N., Bienko, M.,Van Oudenaarden, A., 2015. Spatially resolved transcriptomics and beyond. Nature Reviews Genetics 16, 57-66.
    Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Gephart, M.G.H., Barres, B.A.,Quake, S.R., 2015. A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences 112, 7285-7290.
    DeTomaso, D., Jones, M.G., Subramaniam, M., Ashuach, T., Chun, J.Y.,Yosef, N., 2019. Functional interpretation of single cell similarity maps. Nature communications 10, 1-11.
    DeTomaso, D.,Yosef, N., 2021. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Systems 12, 446-456. e449.
    Fan, X., Dong, J., Zhong, S., Wei, Y., Wu, Q., Yan, L., Yong, J., Sun, L., Wang, X.,Zhao, Y., 2018. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell research 28, 730-745.
    Goolam, M., Scialdone, A., Graham, S.J., Macaulay, I.C., Jedrusik, A., Hupalowska, A., Voet, T., Marioni, J.C.,Zernicka-Goetz, M., 2016. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61-74.
    Hashimshony, T., Wagner, F., Sher, N.,Yanai, I., 2012. CEL-Seq:single-cell RNA-Seq by multiplexed linear amplification. Cell reports 2, 666-673.
    Jiang, L., Chen, H., Pinello, L.,Yuan, G.-C., 2016. GiniClust:detecting rare cell types from single-cell gene expression data with Gini index. Genome biology 17, 1-13.
    Junker, J.P., Noel, E.S., Guryev, V., Peterson, K.A., Shah, G., Huisken, J., McMahon, A.P., Berezikov, E., Bakkers, J.,van Oudenaarden, A., 2014. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662-675.
    Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C.,Nilsson, M., 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nature methods 10, 857-860.
    Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A.,Kirschner, M.W., 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201.
    Li, H., Courtois, E.T., Sengupta, D., Tan, Y., Chen, K.H., Goh, J.J.L., Kong, S.L., Chua, C., Hon, L.K.,Tan, W.S., 2017. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nature genetics 49, 708-718.
    Lutkepohl, H., 1997. Handbook of matrices. Computational statistics and Data analysis 2, 243.
    Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N.,Martersteck, E.M., 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214.
    Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Falcao, A.M., Xiao, L., Li, H., Haring, M., Hochgerner, H.,Romanov, R.A., 2016. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326-1329.
    McInnes, L., Healy, J.,Melville, J., 2018. Umap:Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:180203426.
    Romanov, R.A., Zeisel, A., Bakker, J., Girach, F., Hellysaz, A., Tomer, R., Alpar, A., Mulder, J., Clotman, F.,Keimpema, E., 2017. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature neuroscience 20, 176-188.
    Segerstolpe, A., Palasantza, A., Eliasson, P., Andersson, E.-M., Andreasson, A.-C., Sun, X., Picelli, S., Sabirsh, A., Clausen, M.,Bjursell, M.K., 2016. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell metabolism 24, 593-607.
    Sheikh, F., Ouyang, K., Campbell, S.G., Lyon, R.C., Chuang, J., Fitzsimons, D., Tangney, J., Hidalgo, C.G., Chung, C.S.,Cheng, H., 2012. Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. The Journal of clinical investigation 122, 1209-1221.
    Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O.,Huss, M., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82.
    Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W.M., Hao, Y., Stoeckius, M., Smibert, P.,Satija, R., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902. e1821.
    Sun, S., Zhu, J.,Zhou, X., 2020. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nature methods 17, 193-200.
    Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B.,Siddiqui, A., 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nature methods 6, 377-382.
    Tseng, A., 2020. KneeArrower:Finds Cutoff Points on Knee Curves.
    Van der Maaten, L.,Hinton, G., 2008. Visualizing data using t-SNE. Journal of machine learning research 9.
    Xu, C.,Su, Z., 2015. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980.
    Zappia, L., Phipson, B.,Oshlack, A., 2017. Splatter:simulation of single-cell RNA sequencing data. Genome biology 18, 1-15.
    Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A., Marques, S., Munguba, H., He, L.,Betsholtz, C., 2015. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142.
    Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P.,Zhu, J., 2017. Massively parallel digital transcriptional profiling of single cells. Nature communications 8, 1-12
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (518) PDF downloads (43) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return