5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line

doi: 10.1016/j.jgg.2022.01.002
Funds:

This work was supported by grants from the National Key Research and Development Program of China (2020YFA0509900), the National Natural Science Foundation of China (31788103, 32171284, 31991184 and 31701096), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA24010302), and the State Key Laboratory of Plant Genomics, China.

  • Received Date: 2021-11-12
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2022-01-05
  • Publish Date: 2022-01-15
  • Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we use translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels are enriched in pollen and anther-related formation and development processes. These contain a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
  • loading
  • Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169
    Bailey-Serres, J., 2013. Microgenomics:genome-scale, cell-specific monitoring of multiple gene regulation tiers. Annu. Rev. Plant Biol. 64, 293-325
    Cai, C.F., Zhu, J., Lou, Y., Guo, Z.L., Xiong, S.X., Wang, K., Yang, Z.N., 2015. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Sci. Bull. 60, 1073-1082
    Castro-Guerrero, N.A., Cui, Y.Y., Mendoza-Cozatl, D.G., 2016. Purification of translating ribosomes and associated mRNAs from soybean (Glycine max). Curr. Protoc. Plant Biol. 1, 185-196
    Chang, L., Ma, H., Xue, H.W., 2009. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice. Cell Res. 19, 768-782
    Chen, R.Z., Deng, Y.W., Ding, Y.L., Guo, J.X., Qiu, J., Wang, B., Wang, C.S., Xie, Y.Y., Zhang, Z.H., Chen, J.X., Chen, L.T., Chu, C.C., He, G.C., He, Z.H., Huang, X.H., Xing, Y.Z., Yang, S.H., Xie, D.X., Liu, Y.G., Li, J.Y., 2021. Rice functional genomics:decades' efforts and roads ahead. Sci. China Life Sci. https://doi.org/10.1007/s11427-021-2024-0
    Cheng, S.H., Zhuang, J.Y., Fan, Y.Y., Du, J.H., Cao, L.Y., 2007. Progress in research and development on hybrid rice:a super-domesticate in China. Ann. Bot. 100, 959-966
    Ding, J.H., Lu, Q., Ouyang, Y.D., Mao, H.L., Zhang, P.B., Yao, J.L., Xu, C.G., Li, X.H, Xiao, J.H., Zhang, Q.F., 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109, 2654-2659
    Fan, Y.R., Yang, J.Y., Mathioni, S.M., Yu, J.S., Shen, J.Q., Yang, X.F., Wang, L., Zhang, Q.H., Cai, Z.X., Xu, C.G., Li, X.H., Xiao, J.H., Meyers, B.C., Zhang, Q.F., 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 113, 15144-15149
    Gracida, X., Calarco, J.A., 2017. Cell type-specific transcriptome profiling in C. elegans using the translating ribosome affinity purification technique. Methods 126, 130-137
    Hershey, J.W., Sonenberg, N., Mathews, M.B., 2012. Principles of translational control:an overview. Cold Spring Harbor Perspect. Biol. 4, a011528
    Hirano, K., Aya, K., Hobo, T., Sakakibara, H., Kojima, M., Shim, R.A., Hasegawa, Y., Ueguchi-Tanaka, M., Matsuoka, M., 2008. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 49, 1429-1450
    Hu, J.H., Chen, G.L., Zhang, H.Y., Qian, Q., Ding, Y., 2016. Comparative transcript profiling of alloplasmic male-sterile lines revealed altered gene expression related to pollen development in rice (Oryza sativa L.). BMC Plant Biol. 16, 175
    Ischebeck, T., 2016. Lipids in pollen-They are different. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861, 1315-1328
    Ji, C.H., Li, H.Y., Chen, L.B., Xie, M., Wang, F.P., Chen, Y.L., Liu, Y.G., 2013. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol. Plant 6, 1715-1718
    Jiang, J., Zhang, Z., Cao, J., 2013. Pollen wall development:the associated enzymes and metabolic pathways. Plant Biol. 15, 249-263
    Jiang, P.F., Lian, B., Liu, C.Z., Fu, Z.Y., Shen, Y., Cheng, Z.C., Qi, Y.J., 2020. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat. Commun. 11, 5191
    Jiao, Y.L., Meyerowitz, E.M., 2010. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol. Syst. Biol. 6, 419
    Juntawong, P., Girke, T., Bazin, J., Bailey-Serres, J., 2014. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111, E203-E212
    Komiya, R., Ohyanagi, H., Niihama, M., Watanabe, T., Nakano, M., Kurata, N., Nonomura, K., 2014. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J. 78, 385-397
    Kong, L., Zhang, Y., Ye, Z.Q., Liu, X.Q., Zhao, S.Q., Wei, L., Gao, G., 2007. CPC:assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345-W349
    Ku, S.J., Yoon, H., Suh, H.S., Chung, Y.Y., 2003. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217, 559-565
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357
    Lei, X.N., Liu, B., 2019. Tapetum-dependent male meiosis progression in plants:increasing evidence emerges. Front. Plant Sci. 10, 1667
    Li, C., Tao, R.F., Li, Y., Duan, M.H., Xu, J.H., 2020a. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics 112, 2119-2129
    Li, J.W., Ma, W., Zeng, P., Wang, J.Y., Geng, B., Yang, J.C., Cui, Q.H., 2015a. LncTar:a tool for predicting the RNA targets of long noncoding RNAs. Briefings Bioinf. 16, 806-812
    Li, W.X., Chen, C.B., Markmann-Mulisch, U., Timofejeva, L., Schmelzer, E., Ma, H., Reiss, B., 2004. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. U.S.A. 101, 10596-10601
    Li, X., Shahid, M.Q., Wen, M.S., Chen, S.L., Yu, H., Jiao, Y.M., Lu, Z.J., Li, Y.J., Liu, X.D., 2020b. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biol. 20, 1-19
    Li, Y.L., Li, D.D., Guo, Z.L., Shi, Q.S., Xiong, S.X., Zhang, C., Zhu, J., Yang, Z.N., 2016. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol. 16, 256
    Li, Y.X., Li, Q.Q., Beuchat, G., Zeng, H.Q., Zhang, C.K., Chen, L.Q., 2021. Combined analyses of translatome and transcriptome in Arabidopsis reveal new players responding to magnesium deficiency. J. Integr. Plant Biol. https://doi.org/10.1111/jipb.13169
    Li, Z.F., Zhang, Y.C., Chen, Y.Q., 2015b. miRNAs and lncRNAs in reproductive development. Plant Sci. 238, 46-52
    Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., Zhang, D.B., 2006. The Rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014
    Li, J., Zhang, H.W., Si, X.M., Tian, Y.H., Chen, K.L., Liu, J.X., Chen, H.B., Gao, C.X., 2017. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genomics 44, 465-468
    Lian, J.P., Yang, Y.W., He, R.R., Yang, L., Zhou, Y.F., Lei, M.Q., Zhang, Z., Huang, J.H., Cheng, Y., Liu, Y.W., Zhang, Y.C., Chen, Y.Q., 2021. Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation. Plant Cell 33, 2685-2700
    Lin, S.Y., Chen, P.W., Chuang, M.H., Juntawong, P., Bailey-Serres, J., Jauh, G.Y., 2014. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26, 602-618
    Liu, Y.S., Beyer, A., Aebersold, R., 2016. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535-550
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408
    Lu, J.Y., Wang, C.L., Wang, H.Y., Zheng, H., Bai, W.T., Lei, D.K., Tian, Y.L., Xiao, Y.J., You, S.M., Wang, Q.M., Yu, X.W., Liu, S.J., Liu, X., Chen, L.M., Jang, L., Wang, C.M., Zhao, Z.G., Wan, J.M., 2020. OsMFS1/OsHOP2 complex participates in rice male and female development. Front. Plant Sci. 11, 518
    Luo, Q., Tang, D., Wang, M., Luo, W.X., Zhang, L., Qin, B.X., Shen, Y., Wang, K.J., Li, Y.F., Cheng, Z.K., 2013. The role of OsMSH5 in crossover formation during rice meiosis. Mol. Plant 6, 729-742
    Ma, H., 2006. A molecular portrait of Arabidopsis meiosis. Arabidopsis Book 4, e0095
    Ma, X., Liu, C.Y., Cao, X.F., 2021. Plant transfer RNA-derived fragments:biogenesis and functions. J. Integr. Plant Biol. 63, 1399-1409
    Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10-12
    Meteignier, L.V., El Oirdi, M., Cohen, M., Barff, T., Matteau, D., Lucier, J.F., Rodrigue, S., Jacques, P.E., Yoshioka, K., Moffett, P., 2017. Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. J. Exp. Bot. 68, 2333-2344
    Mustroph, A., Zanetti, M.E., Jang, C.J., Holtan, H.E., Repetti, P.P., Galbraith, D.W., Girke, T., Bailey-Serres, J., 2009. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 18843-18848
    Niu, B.X., He, F.R., He, M., Ren, D., Chen, L.T., Liu, Y.G., 2013a. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. J. Integr. Plant Biol. 55, 710-720
    Niu, N.N., Liang, W.Q., Yang, X.J., Jin, W.L., Wilson, Z.A., Hu, J.P., Zhang, D.B., 2013b. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat. Commun. 4, 1-11
    Nonomura, K.I., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., Hirochika, H., Kurata, N., 2007. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583-2594
    Poidevin, L., Forment, J., Unal, D., Ferrando, A., 2021. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. Plant Cell Environ. 44, 2167-2184
    Qin, P., Tu, B., Wang, Y.P., Deng, L.C., Quilichini, T.D., Li, T., Wang, H., Ma, B.T., Li, S.G., 2013. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol. 54, 138-154
    Qu, A.L., Xu, Y., Yu, X.X., Si, Q., Xu, X.W., Liu, C.H., Yang, L.Y., Zheng, Y.P., Zhang, M.M., Zhang, S.Q., Xu, J., 2021. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice. J. Genet. Genomics 48, 695-705
    Quinlan, A.R., Hall, I.M., 2010. BEDTools:a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842
    Reynoso, M.A., Blanco, F.A., Bailey-Serres, J., Crespi, M., Zanetti, M.E., 2013. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J. 73, 289-301
    Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140
    Rodnina, M.V., 2016. The ribosome in action:tuning of translational efficiency and protein folding. Protein Sci. 25, 1390-1406
    Shi, J., Tan, H.X., Yu, X.H., Liu, Y.Y., Liang, W.Q., Ranathunge, K., Franke, R.B., Schreiber, L., Wang, Y.J., Kai, G.Y., Shanklin, J., Ma, H., Zhang, D.B., 2011. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23, 2225-2246
    Ron, M., Kajala, K., Pauluzzi, G., Wang, D.X., Reynoso, M.A., Zumstein, K., Garcha, J., Winte, S., Masson, H., Inagaki, S., Federici, F., Sinha, N., Deal, R.B., Bailey-Serres, J., Brady, S.M., 2014. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455-469
    Shi, J.X., Cui, M.H., Yang, L., Kim, Y.J., Zhang, D.B., 2015. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 20, 741-753
    Si, F.Y., Cao, X.F., Song, X.W., Deng, X., 2020. Processing of coding and non-coding RNAs in plant development and environmental responses. Essays Biochem. 64, 931-945
    Song, X.W., Wang, D.K., Ma, L.J., Chen, Z.Y., Li, P.C., Cui, X., Liu, C.Y., Cao, S.Y., Chu, C.C., Tao, Y.Z., Cao, X.F., 2012. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71, 378-389
    Su, N., Hu, M.L., Wu, D.X., Wu, F.Q., Fei, G.L., Lan, Y., Chen, X.L., Shu, X.L., Zhang, X., Guo, X.P., 2012. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol. 159, 227-238
    Tian, C.H., Zhang, X.N., He, J., Yu, H.P., Wang, Y., Shi, B.H., Han, Y.Y., Wang, G.X., Feng, X.M., Zhang, C., Wang, J., Qi, J.Y., Yu, R., Jiao, Y.L., 2014. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10, 755
    Trapnell, C., Pachter, L., Salzberg, S.L., 2009. TopHat:discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., Pachter, L., 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578
    Traubenik, S., Blanco, F., Zanetti, M.E., Reynoso, M.A., 2020. TRAP-SEQ of eukaryotic translatomes applied to the detection of polysome-associated long noncoding RNAs. In:Heinlein M. (eds) RNA Tagging, Methods in Molecular Biology, Humana Press, New York, pp. 451-472
    Tsuchiya, T., Toriyama, K., Ejiri, S.i., Hinata, K., 1994. Molecular characterization of rice genes specifically expressed in the anther tapetum. Plant Mol. Biol. 26, 1737-1746
    VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H., van Oudenaarden, A., 2021. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561-565
    Wang, K.J., Tang, D., Wang, M., Lu, J.F., Yu, H.X., Liu, J.F., Qian, B.X., Gong, Z.Y., Wang, X., Chen, J.M., Gu, M.H., Cheng, Z.K., 2009. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J. Cell Sci. 122, 2055-2063
    Wang, S.Y., Tian, Q.Y., Zhou, S.Q., Mao, D.D., Chen, L.B., 2019. A quantitative proteomic analysis of the molecular mechanism underlying fertility conversion in thermo-sensitive genetic male sterility line AnnongS-1. BMC Plant Biol. 19, 65
    Wang, Y., Jiao, Y.L., 2014. Translating ribosome affinity purification (TRAP) for cell-specific translation profiling in developing flowers. In:Riechmann J.L., Wellmer F., (Eds.), Flower Development, Methods in Molecular Biology, Humana Press, New York, pp. 323-328
    Wang, Y., Zhang, H.Y., Li, Q., Jin, J., Chen, H., Zou, Y., Huang, X.G., Ding, Y., 2021a. Genome-wide identification of lncRNAs involved in fertility transition in the photo-thermosensitive genic male sterile rice line Wuxiang S. Front. Plant Sci.11, 2262
    Wang, Y., Huan, Q., Li, K., Qian, W.F., 2021b. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J. Genet. Genomics 48, 881-898
    Wu, J.W., Chen, Y.M., Lin, H., Chen, Y., Yu, H., Lu, Z.J., Li, X., Zhou, H., Chen, Z.X., Liu, X.D., 2020. Comparative cytological and transcriptome analysis revealed the normal pollen development process and up-regulation of fertility-related genes in newly developed tetraploid rice. Int. J. Mol. Sci. 21, 7046
    Wu, L.N., Guan, Y.S., Wu, Z.G., Yang, K., Lv, J., Converse, R., Huang, Y.X., Mao, J.X., Zhao, Y., Wang, Z.W., Min H.Q., Kan D.Y., Zhang Y., 2014. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep. 33, 1881-1899
    Yang, X.J., Liang, W.Q., Chen, M.J., Zhang, D.B., Zhao, X.X., Shi, J.X., 2017. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta 246, 105-122
    Yang, Z.F., Sun, L.P., Zhang, P.P., Zhang, Y.X., Yu, P., Liu, L., Abbas, A., Xiang, X.J., Wu, W.X., Zhan, X.D., Cao L.Y., Cheng S.H., 2019. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. Plant J. 99, 844-861
    Yang, Y.Z., Tang, P.L., Yang, W.C., Liu, A.M., Chen, Y.Q., Ling, W.B., Shi, T., 2000. Breeding and utilization of TGMS line Zhu1S in rice. Hybrid. Rice 15, 6-9
    Yang, X.J., Wu, D., Shi, J.X., He, Y., Pinot, F., Grausem, B., Yin, C., Zhu, L., Chen, M.J., Luo, Z.J., Liang W.Q., Zhang D.B., 2014. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J. Integr. Plant Biol. 56, 979-994
    Yu, J.P., Han, J.J., Kim, Y.J., Song, M., Yang, Z., He, Y., Fu, R.F., Luo, Z.J., Hu, J.P., Liang, W.Q., Zhang, D.B., 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc. Natl. Acad. Sci. U.S.A. 114, 12327-12332
    Yu, Y., Zhang, Y.C., Chen, X.M., Chen, Y.Q., 2019. Plant Noncoding RNAs:hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 35, 407-431
    Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W., Bailey-Serres, J., 2005. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624-635
    Zhang, D.B., Shi, J.X., Yang, X.J., 2016. Role of lipid metabolism in plant pollen exine development. In:Nakamura, Y., Li-Beisson, Y. (Eds.), Lipids in Plant and Algae Development, Subcellular Biochemistry. Springer International Publishing, New York, pp. 315-337
    Zhang, H.L., Chen, X.Y., Huang, J.Z., Zhi-Guo, E., Gong, J., Shu, Q., 2015. Identification and transition analysis of photo-/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci. Agric. Sin. 48, 1-9
    Zhang, D.B., Wilson, Z.A., 2009. Stamen specification and anther development in rice. Chin. Sci. Bull. 54, 2342-2353
    Zhang, D.B., Luo, X., Zhu, L., 2011. Cytological analysis and genetic control of rice anther development. J. Genet. Genomics 38, 379-390
    Zhang, D.S., Liang, W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J., Zhang, D.B., 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol. Plant 1, 599-610
    Zhang, Y.C., Liao, J.Y., Li, Z.Y., Yu, Y., Zhang, J.P., Li, Q.F., Qu, L.H., Shu, W.S., Chen, Y.Q., 2014. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 15, 1-16
    Zhao, G.C., Shi, J.X., Liang, W.Q., Xue, F.Y., Luo, Q., Zhu, L., Qu, G.R., Chen, M.J., Schreiber, L., Zhang, D.B., 2015. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol. 169, 2064-2079
    Zhang, F., Zhang, Y.C., Liao, J.Y., Yu, Y., Zhou, Y.F., Feng, Y.Z., Yang, Y.W., Lei, M.Q., Bai, M., Wu, H., Chen, Y.Q., 2019. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet. 15, e1008120
    Zhao, D.Y., Hamilton, J.P., Hardigan, M., Yin, D.M., He, T., Vaillancourt, B., Reynoso, M., Pauluzzi, G., Funkhouser, S., Cui, Y.H., Bailey-Serres, J., Jiang, J.M., Buell, C.R., Jiang, N., 2017. Analysis of ribosome-associated mRNAs in rice reveals the importance of transcript size and GC content in translation. G3 7, 203-219
    Zhao, J., Qin, B., Nikolay, R., Spahn, C.M.T., Zhang, G., 2019. Translatomics:the global view of translation. Int. J. Mol. Sci. 20, 212
    Zhou, H., He, M., Li, J., Chen, L., Huang, Z.F., Zheng, S.Y., Zhu, L.Y., Ni, E.D., Jiang, D.G., Zhao, B.R., Zhuang, C.X., 2016. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep. 6, 37395
    Zhou, H., Liu, Q.J., Li, J., Jiang, D.G, Zhou, L.Y., Wu, P., Lu, S., Li, F., Zhu, L.Y., Liu, Z.N, Chen, L.T, Liu, Y.G., Zhuang, C.X., 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649-660
    Zhou, H., Zhou, M., Yang, Y.Z., Li, J., Zhu, L.Y., Jiang, D.G., Dong, J.F., Liu, Q.J., Gu, L.F., Zhou, L.Y., Feng, M.J., Qin, P., Hu, X.C., Song, C.L., Shi, J.F., Song, X.W., Ni, E.D., Wu, X.J., Deng, Q.Y., Liu, Z.N., Chen, M.S., Liu, Y.G., Cao, X.F., Zhuang, C.X., 2014. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat. Commun. 5, 4884
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (288) PDF downloads (132) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return