5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

Comprehensive understanding to the public health risk of environmental microbes via a microbiome-based index

doi: 10.1016/j.jgg.2021.12.011
Funds:

Gamble Singapore Innovation Center for the support in data arrangement.

D Program of China, grants 31771463 and 32070086 from the National Nature Science Foundation of China. J.X. acknowledges the support of P&

G-CAS Collaborative Research fund. We thank Xiaoqian Fan from Shouguang Hosptial of T.C.M for the artificial curation of disease information, and Tzehau Lam from Procter &

X.S. acknowledges the support of grant 2021YFF0704500 from National Key R&

  • Received Date: 2021-10-29
  • Accepted Date: 2021-12-20
  • Rev Recd Date: 2021-12-20
  • Publish Date: 2022-01-10
  • loading
  • Bielaszewska, M., Mellmann, A., Zhang, W., Kock, R., Fruth, A., Bauwens, A., Peters, G.,Karch, H., 2011. Characterisation of the escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011:a microbiological study. Lancet Infect. Dis. 11, 671-676
    Dunn, R.R., Fierer, N., Henley, J.B., Leff, J.W.,Menninger, H.L., 2013. Home life:factors structuring the bacterial diversity found within and between homes. PLoS One 8, e64133
    Gao, Z., Tseng, C.-h., Pei, Z.,Blaser, M.J., 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. U.S.A. 104, 2927-2932
    Grice, E.A.,Segre, J.A., 2011. The skin microbiome. Nat. Rev. Microbiol. 9, 244-253
    Huang, S., Li, R., Zeng, X., He, T., Zhao, H., Chang, A., Bo, C., Chen, J., Yang, F.,Knight, R., 2014. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 8, 1768-1780
    Jing, G., Liu, L., Wang, Z., Zhang, Y., Qian, L., Gao, C., Zhang, M., Li, M., Zhang, Z.,Liu, X., 2021a. Microbiome search engine 2:a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level. mSystems 6, e00943-00920
    Jing, G., Zhang, Y., Cui, W., Liu, L., Xu, J.,Su, X., 2021b. Meta-apo improves accuracy of 16s-amplicon-based prediction of microbiome function. BMC Genom. 22, 1-11
    Jing, G., Zhang, Y., Liu, L., Wang, Z., Sun, Z., Knight, R., Su, X.,Xu, J., 2021c. A scale-free, fully connected global transition network underlies known microbiome diversity. mSystems 6, e00394-00321
    Lax, S., Nagler, C.R.,Gilbert, J.A., 2015. Our interface with the built environment:immunity and the indoor microbiota. Trends Immunol. 36, 121-123
    Lax, S., Sangwan, N., Smith, D., Larsen, P., Handley, K.M., Richardson, M., Guyton, K., Krezalek, M., Shogan, B.D.,Defazio, J., 2017. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9
    Lax, S., Smith, D.P., Hampton-Marcell, J., Owens, S.M., Handley, K.M., Scott, N.M., Gibbons, S.M., Larsen, P., Shogan, B.D.,Weiss, S., 2014. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048-1052
    Miao, J., Han, N., Qiang, Y., Zhang, T., Li, X.,Zhang, W., 2017. 16spip:a comprehensive analysis pipeline for rapid pathogen detection in clinical samples based on 16s metagenomic sequencing. BMC Bioinf. 18, 255-259
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J.,Glockner, F.O., 2012. The silva ribosomal rna gene database project:improved data processing and web-based tools. Nucleic Acids Res. 41, D590-D596
    Sawyer, C., Vishram, B., Jenkins, C., Jorgensen, F., Byrne, L., Mikhail, A., Dallman, T., Carroll, K., Ahyow, L., Vahora, Q., et al., 2021. Epidemiological investigation of recurrent outbreaks of haemolytic uraemic syndrome caused by shiga toxin-producing escherichia coli serotype o55:H7 in england, 2014-2018. Epidemiology 149
    Su, X., 2021. Elucidating the beta-diversity of the microbiome:from global alignment to local alignment. mSystems 6, e00363-00321
    Su, X., Wang, X., Jing, G.,Ning, K., 2014. Gpu-meta-storms:computing the structure similarities among massive amount of microbial community samples using gpu. Bioinformatics 30, 1031-1033
    Sun, Z., Huang, S., Zhu, P., Yue, F., Zhao, H., Yang, M., Niu, Y., Jing, G., Su, X.,Li, H., 2019. A microbiome-based index for assessing skin health and treatment effects for atopic dermatitis in children. mSystems 4, e00293-00219
    Teng, F., Yang, F., Huang, S., Bo, C., Xu, Z.Z., Amir, A., Knight, R., Ling, J.,Xu, J., 2015. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 18, 296-306
    Tringe, S.G., Zhang, T., Liu, X., Yu, Y., Lee, W.H., Yap, J., Yao, F., Suan, S.T., Ing, S.K.,Haynes, M., 2008. The airborne metagenome in an indoor urban environment. PLoS One 3, e1862
    Zhao, N., Cao, J., Xu, J., Liu, B., Liu, B., Chen, D., Xia, B., Chen, L., Zhang, W., Zhang, Y., et al., 2021. Targeting rna with next- and third-generation sequencing improves pathogen identification in clinical samples. Adv. Sci. 8, 2102593
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (590) PDF downloads (184) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return