5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 6
Jun.  2022
Turn off MathJax
Article Contents

The gut microbiome and microbial metabolites in acute myocardial infarction

doi: 10.1016/j.jgg.2021.12.007
Funds:

D Program of China at the Ministry of Science and Technology of the People's Republic of China (Grant No. 2021YFA301003), the Clinical Research Plan of Shanghai Hospital Development Center at the Shanghai Hospital Development Center (Grant No. SHDC2020CR1007A), the Shanghai Municipal Science and Technology Major Project at the Science and Technology Commission of Shanghai Municipality (Grant No. 2017SHZDZX01), and the General Program at the National Natural Science Foundation of China (Grant No. 81973032). Y.Z. was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

This project was supported by the National Key R&

  • Received Date: 2021-08-31
  • Accepted Date: 2021-12-12
  • Rev Recd Date: 2021-12-11
  • Publish Date: 2022-06-30
  • Emerging evidence has highlighted the role of gut microbiome in human health. However, the integrative role of gut microbiome and microbial metabolites in acute myocardial infarction (AMI) remains unclear. The current study profiles the microbial community through 16S rRNA gene sequencing and shotgun metagenomic sequencing and measures fecal short-chain fatty acids and circulating choline pathway metabolites among 117 new-onset AMI cases and 78 controls. Significant microbial alternations are observed in AMI patients compared with controls (P=0.001). The abundances of nine species (e.g., Streptococcus salivarius and Klebsiella pneumoniae) are positively associated, and one species (Roseburia hominis) is inversely associated with AMI status and severity. A gut microbial score at disease onset is associated with the risk of major adverse cardiovascular events in 3.2 years (hazard ratio[95% CI]:2.01[1.04-4.24]) in AMI patients. The molar proportions of fecal acetate and butyrate are higher, and the circulating levels of choline and carnitine are lower in AMI patients than in controls. In addition, disease classifiers show that AMI cases and controls have a more distinct pattern in taxonomical composition than in pathways or metabolites. Our findings suggest that microbial composition and functional potentials are associated with AMI status and severity.
  • loading
  • Anderson, J.L.,Morrow, D.A., 2017. Acute Myocardial Infarction. N. Engl. J. Med. 376, 2053-2064
    Antoniades, C., Antonopoulos, A.S., Tousoulis, D., Marinou, K.,Stefanadis, C., 2009. Homocysteine and coronary atherosclerosis:from folate fortification to the recent clinical trials. Eur. Heart J. 30, 6-15
    Antoniades, C., Cunnington, C., Antonopoulos, A., Neville, M., Margaritis, M., Demosthenous, M., Bendall, J., Hale, A., Cerrato, R., Tousoulis, D., et al., 2011. Induction of vascular GTP-cyclohydrolase I and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis. Circulation. 124, 1860-1870
    Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L.T., Keum, N., Norat, T., Greenwood, D.C., Riboli, E., Vatten, L.J.,Tonstad, S., 2017. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 46, 1029-1056
    Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Marko, L., Hoges, S., Tsvetkov, D., Krannich, A., Wundersitz, S., Avery, E.G., et al., 2019. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation. 139, 1407-1421
    Bassiri, A.G., Girgis, R.E.,Theodore, J., 1996. Actinomyces odontolyticus thoracopulmonary infections. Two cases in lung and heart-lung transplant recipients and a review of the literature. Chest. 109, 1109-1111
    Baumler, A.J.,Sperandio, V., 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 535, 85-93
    Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Das, S.R., et al., 2019. Heart Disease and Stroke Statistics-2019 Update:A Report From the American Heart Association. Circulation. 139, e56-e528
    Bjornestad, E.O., Olset, H., Dhar, I., Loland, K., Pedersen, E.K.R., Svingen, G.F.T., Svardal, A., Berge, R.K., Ueland, P.M., Tell, G.S., et al., 2020. Circulating trimethyllysine and risk of acute myocardial infarction in patients with suspected stable coronary heart disease. J. Intern. Med. 288, 446-456
    Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al., 2019. Author Correction:Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091
    Brandsma, E., Kloosterhuis, N.J., Koster, M., Dekker, D.C., Gijbels, M.J.J., van der Velden, S., Rios-Morales, M., van Faassen, M.J.R., Loreti, M.G., de Bruin, A., et al., 2019. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ. Res. 124, 94-100
    Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Midford, P.E., Ong, Q., Ong, W.K., et al., 2018. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633-D639
    Chambers, E.S., Preston, T., Frost, G.,Morrison, D.J., 2018. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 7, 198-206
    Chaturvedi, P., Kamat, P.K., Kalani, A., Familtseva, A.,Tyagi, S.C., 2016. High Methionine Diet Poses Cardiac Threat:A Molecular Insight. J. Cell. Physiol. 231, 1554-1561
    Cone, L.A., Leung, M.M.,Hirschberg, J., 2003. Actinomyces odontolyticus bacteremia. Emerg. Infect. Dis. 9, 1629-1632
    Dai, Y., Tian, Q., Si, J., Sun, Z., Shali, S., Xu, L., Ren, D., Chang, S., Dong, X., Zhao, H., et al., 2020. Circulating metabolites from the choline pathway and acute coronary syndromes in a Chinese case-control study. Nutr. Metab.(Lond). 17, 39
    Dalile, B., Van Oudenhove, L., Vervliet, B.,Verbeke, K., 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461-478
    Der Vartanian, M., Jaffeux, B., Contrepois, M., Chavarot, M., Girardeau, J.P., Bertin, Y.,Martin, C., 1992. Role of aerobactin in systemic spread of an opportunistic strain of Escherichia coli from the intestinal tract of gnotobiotic lambs. Infect. Immun. 60, 2800-2807
    Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., et al., 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods. 15, 962-968
    Gensini, G.G., 1983. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 51, 606
    Guasch-Ferre, M., Hu, F.B., Ruiz-Canela, M., Bullo, M., Toledo, E., Wang, D.D., Corella, D., Gomez-Gracia, E., Fiol, M., Estruch, R., et al., 2017. Plasma Metabolites From Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J. Am. Heart Assoc. 6
    Heianza, Y., Ma, W., Manson, J.E., Rexrode, K.M.,Qi, L., 2017. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death:A Systematic Review and Meta-Analysis of Prospective Studies. J. Am. Heart Assoc. 6
    Ibanez, B., James, S., Agewall, S., Antunes, M.J., Bucciarelli-Ducci, C., Bueno, H., Caforio, A.L.P., Crea, F., Goudevenos, J.A., Halvorsen, S., et al., 2018. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation:The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119-177
    Karlsson, F.H., Fak, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Backhed, F.,Nielsen, J., 2012. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245
    Klatt, N.R., Funderburg, N.T.,Brenchley, J.M., 2013. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 21, 6-13
    Ko, W.C., Paterson, D.L., Sagnimeni, A.J., Hansen, D.S., Von Gottberg, A., Mohapatra, S., Casellas, J.M., Goossens, H., Mulazimoglu, L., Trenholme, G., et al., 2002. Community-acquired Klebsiella pneumoniae bacteremia:global differences in clinical patterns. Emerg. Infect. Dis. 8, 160-166
    Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al., 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576-585
    Kurilshikov, A., van den Munckhof, I.C.L., Chen, L., Bonder, M.J., Schraa, K., Rutten, J.H.W., Riksen, N.P., de Graaf, J., Oosting, M., Sanna, S., et al., 2019. Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk. Circ. Res. 124, 1808-1820
    Li, M., van Esch, B., Wagenaar, G.T.M., Garssen, J., Folkerts, G.,Henricks, P.A.J., 2018. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 831, 52-59
    Li, X.S., Obeid, S., Klingenberg, R., Gencer, B., Mach, F., Raber, L., Windecker, S., Rodondi, N., Nanchen, D., Muller, O., et al., 2017. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes:a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 38, 814-824
    Libby, P.,Theroux, P., 2005. Pathophysiology of coronary artery disease. Circulation. 111, 3481-3488
    Liu, B., Zheng, D., Jin, Q., Chen, L.,Yang, J., 2019a. VFDB 2019:a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687-D692
    Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., Pang, H., Jiang, L., Qiu, B., Chen, X., et al., 2019b. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 7, 68
    Liu, X., Xie, Z., Sun, M., Wang, X., Li, J., Cui, J., Zhang, F., Yin, L., Huang, D., Hou, J., et al., 2018. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography. Int. J. Cardiol. 265, 18-23
    Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., et al., 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 63, 1275-1283
    Meslier, V., Laiola, M., Roager, H.M., De Filippis, F., Roume, H., Quinquis, B., Giacco, R., Mennella, I., Ferracane, R., Pons, N., et al., 2020. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 69, 1258-1268
    Ott, S.J., El Mokhtari, N.E., Musfeldt, M., Hellmig, S., Freitag, S., Rehman, A., Kuhbacher, T., Nikolaus, S., Namsolleck, P., Blaut, M., et al., 2006. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 113, 929-937
    Patel, S.A., Winkel, M., Ali, M.K., Narayan, K.M.,Mehta, N.K., 2015. Cardiovascular mortality associated with 5 leading risk factors:national and state preventable fractions estimated from survey data. Ann. Intern. Med. 163, 245-253
    Pluznick, J.L., Protzko, R.J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., Brunet, I., Wan, L.X., Rey, F., Wang, T., et al., 2013. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. U S A. 110, 4410-4415
    Schwiertz, A., Taras, D., Schafer, K., Beijer, S., Bos, N.A., Donus, C.,Hardt, P.D., 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 18, 190-195
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.,Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504
    Sheng, Z., Tan, Y., Liu, C., Zhou, P., Li, J., Zhou, J., Chen, R., Chen, Y., Song, L., Zhao, H., et al., 2019. Relation of Circulating Trimethylamine N-Oxide With Coronary Atherosclerotic Burden in Patients With ST-segment Elevation Myocardial Infarction. Am. J. Cardiol. 123, 894-898
    Stanley, D., Moore, R.J., Wong, C.H.Y., 2018. An insight into intestinal mucosal microbiota disruption after stroke. Sci. Rep. 8, 568
    Tang, W.H., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y.,Hazen, S.L., 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575-1584
    Witkowski, M., Weeks, T.L.,Hazen, S.L., 2020. Gut Microbiota and Cardiovascular Disease. Circ. Res. 127, 553-570
    Xu, K., Gao, X., Xia, G., Chen, M., Zeng, N., Wang, S., You, C., Tian, X., Di, H., Tang, W., et al., 2021. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut
    Yan, Q., Gu, Y., Li, X., Yang, W., Jia, L., Chen, C., Han, X., Huang, Y., Zhao, L., Li, P., et al., 2017. Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 7, 381
    Yang, Y., Zhang, Y., Xu, Y., Luo, T., Ge, Y., Jiang, Y., Shi, Y., Sun, J.,Le, G., 2019. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food. Funct. 10, 5952-5968
    Yin, J., Liao, S.X., He, Y., Wang, S., Xia, G.H., Liu, F.T., Zhu, J.J., You, C., Chen, Q., Zhou, L., et al., 2015. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 4
    Yousuf, O., Mohanty, B.D., Martin, S.S., Joshi, P.H., Blaha, M.J., Nasir, K., Blumenthal, R.S.,Budoff, M.J., 2013. High-sensitivity C-reactive protein and cardiovascular disease:a resolute belief or an elusive link?J. Am. Coll. Cardiol. 62, 397-408
    Zeisel, S.H.,Warrier, M., 2017. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 37, 157-181
    Zijlstra, J.B., Beukema, J., Wolthers, B.G., Byrne, B.M., Groen, A.,Dankert, J., 1977. Pretreatment methods prior to gaschromatographic analysis of volatile fatty acids from faecal samples. Clin. Chim. Acta. 78, 243-250
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads (106) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return