5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

DRBin: metagenomic binning based on deep representation learning

doi: 10.1016/j.jgg.2021.12.005
Funds:

This work was supported by the grants from the National Key Research Program (2021YFA0910700), Shenzhen science and technology university stable support program (GXWD20201230155427003-20200821222112001), Guangdong Key Area Research Program (2020B0101380001), Shenzhen Science and Technology Program (JCYJ20200109113201726).

  • Received Date: 2021-08-20
  • Accepted Date: 2021-12-23
  • Rev Recd Date: 2021-12-14
  • Publish Date: 2021-12-31
  • loading
  • Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L., Loman, N.J., Andersson, A.F.,Quince, C., 2014. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144-1146
    Beaulaurier, J., Zhu, S., Deikus, G., Mogno, I., Zhang, X.-S., Davis-Richardson, A., Canepa, R., Triplett, E.W., Faith, J.J., Sebra, R., et al., 2018. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61-69
    Cai, H., Thompson, R., Budinich, M.F., Broadbent, J.R.,Steele, J.L., 2009. Genome sequence and comparative genome analysis of Lactobacillus casei:insights into their niche-associated evolution. Genome Biol. Evol. 1, 239-257
    Deloris Alexander, A., Orcutt, R.P., Henry, J.C., Baker, J., Bissahoyo, A.C.,Threadgill, D.W., 2006. Quantitative pcr assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm. Genome 17, 1093-1104
    Draper, B.A., Baek, K., Bartlett, M.S.,Beveridge, J.R., 2003. Recognizing faces with PCA and ICA. Comput. Vis. Image Understand. 91, 115-137
    Hazards, E.P.o.B., Koutsoumanis, K., Allende, A., Alvarez-Ordonez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A.,Hilbert, F., 2019. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 17, e05898
    Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A.,Bengio, Y., 2018. Learning Deep Representations by Mutual Information Estimation and Maximization. arXiv preprint arXiv:180806670
    Jiang, H.,Wong, W.H., 2009. Statistical inferences for isoform expression in RNA-seq. Bioinformatics 25, 1026-1032
    Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H.,Wang, Z., 2019. MetaBat 2:an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359
    Kingma, D.P.,Welling, M. 2014. Stochastic gradient vb and the variational auto-encoder. Paper Presented at:Second International Conference on Learning Representations, ICLR 1-24
    Kouchaki, S., Tapinos, A., Robertson, D.L., 2019. A signal processing method for alignment-free metagenomic binning:multi-resolution genomic binary patterns. Sci. Rep. 9, 1-10
    Mallawaarachchi, V., Wickramarachchi, A., Lin, Y., 2020. Graphbin:refined binning of metagenomic contigs using assembly graphs. Bioinformatics 36, 3307-3313
    Mita, K., Kasahara, M., Sasaki, S., Nagayasu, Y., Yamada, T., Kanamori, H., Namiki, N., Kitagawa, M., Yamashita, H., Yasukochi, Y., et al., 2004. The genome sequence of silkworm, bombyx mori. DNA Res. 11, 27-35
    Nissen, J.N., Johansen, J., Allesoee, R.L., Soenderby, C.K., Armenteros, J.J.A., Groenbech, C.H., Jensen, L.J., Nielsen, H.B., Petersen, T.N., Winther, O., et al., 2021. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555-560
    Rasheed, Z.,Rangwala, H. 2013. A map-reduce framework for clustering metagenomes. Paper presented at:2013 IEEE international symposium on parallel & distributed processing, workshops and Phd. Forum IEEE 549-558
    Schacherer, J., Ruderfer, D.M., Gresham, D., Dolinski, K., Botstein, D.,Kruglyak, L., 2007. Genome-wide analysis of nucleotide-level variation in commonly used saccharomyces cerevisiae strains. PLoS One 2, e322
    Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Droge, J., Gregor, I., Majda, S., Fiedler, J., Dahms, E., et al., 2017. Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat. Methods 14, 1063-1071
    Teeling, H., Meyerdierks, A., Bauer, M., Amann, R.,Glockner, F.O., 2004. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ. Microbiol. 6, 938-947
    Wu, Y.-W., Simmons, B.A.,Singer, S.W., 2015. Maxbin 2.0:an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605-607
    Wu, Y.-W.,Ye, Y., 2011. A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. J. Comput. Biol. 18, 523-534
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads (20) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return