5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 3
Mar.  2022
Turn off MathJax
Article Contents

Alternations in the gut microbiota and metabolome with newly diagnosed unstable angina

doi: 10.1016/j.jgg.2021.11.009
Funds:

We would like to thank all the study participants and staff for their cooperation. This work was supported by grants from Foundation of the National Key Research and Development Program of China (2016YFC0900800), the National Natural Science Foundation of China (81930092), the Fundamental Research Funds for the Central University (2019kfyXMBZ015), the 111 Project and the Program for Changjiang Scholars and Innovative Research Team in University.

  • Received Date: 2021-07-01
  • Accepted Date: 2021-11-17
  • Rev Recd Date: 2021-11-14
  • Publish Date: 2021-12-06
  • Gut microbiota plays an important role in coronary heart disease, but its compositional and functional changes in unstable angina (UA) remain unexplored. We performed metagenomic sequencing of 133 newly diagnosed UA patients and 133 sex- and age-matched controls, and profiled the fecal and plasma metabolomes in 30 case-control pairs. The alpha diversity of gut microbiota was increased in UA patients:the adjusted odds ratios (ORs) per standard deviation increase in Shannon and Simpson indices were 1.30 (95% confidence interval, 1.01-1.70) and 1.36 (1.05-1.81), respectively. Two common species (depleted Klebsiella pneumoniae and enriched Streptococcus parasanguinis; P ≤ 0.002) and three rare species (depleted Weissella confusa, enriched Granulicatella adiacens and Erysipelotrichaceae bacterium 6_1_45; P ≤ 0.005) were associated with UA. The UA-associated gut microbiota was depleted in the pathway of L-phenylalanine degradation (P=0.001), primarily contributed by Klebsiella pneumoniae. Consistently, we found increased circulating phenylalanine in UA patients (OR=2.76[1.17-8.16]). Moreover, Streptococcus parasanguinis was negatively correlated with fecal citrulline (Spearman's r=-0.470, P=0.009), a metabolite depleted in UA patients (OR=0.26[0.08-0.63]). These findings are informative to help understand the metabolic connection between gut microbiota and UA.
  • loading
  • Aakko, J., Endo, A., Mangani, C., Maleta, K., Ashorn, P., Isolauri, E., Salminen, S., 2015. Distinctive intestinal Lactobacillus communities in 6-month-old infants from rural Malawi and Southwestern Finland. J. Pediatr. Gastroenterol. Nutr. 61, 641-648
    Agewall, S., 2008. Acute and stable coronary heart disease:different risk factors. Eur. Heart J. 29, 1927-1929
    Agus, A., Planchais, J., Sokol, H., 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 23, 716-724
    Allerton, T.D., Proctor, D.N., Stephens, J.M., Dugas, T.R., Spielmann, G., Irving, B.A., 2018. L-citrulline supplementation:impact on cardiometabolic health. Nutrients 10, 921
    Anderson, J.L., Adams, C.D., Antman, E.M., Bridges, C.R., Califf, R.M., Casey, D.E., Jr, Chavey, W.E., Fesmire, F.M., Hochman, J.S., Levin, T.N., et l., 2013. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127, e663-e828
    Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Das, S.R., et l., 2019. Heart disease and stroke statistics-2019 update:a report from the American Heart Association. Circulation 139, e56-e528
    Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate:a practical and powerful approach to multiple hypothesis testing. J. R. Stat. Soc. B 57, 289-300
    Bhardwaj, R.G., Al-Khabbaz, A., Karched, M., 2018. Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and Abiotrophia spp. Microb. Pathog. 114, 90-94
    Brown, J.M., Hazen, S.L., 2018. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 16, 171-181
    Chen, J., Bittinger, K., Charlson, E.S., Hoffmann, C., Lewis, J., Wu, G.D., Collman, R.G., Bushman, F.D., Li, H., 2012. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28, 2106-2113
    Cui, L., Zhao, T., Hu, H., Zhang, W., Hua, X., 2017. Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed Res. Int. 2017, 3796359
    De Filippis, F., Pellegrini, N., Laghi, L., Gobbetti, M., Ercolini, D., 2016. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome 4, 57
    Emoto, T., Yamashita, T., Sasaki, N., Hirota, Y., Hayashi, T., So, A., Kasahara, K., Yodoi, K., Matsumoto, T., Mizoguchi, T., et l., 2016. Analysis of gut microbiota in coronary artery disease patients:a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 23, 908-921
    Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55-71
    Feng, Q., Liu, Z., Zhong, S., Li, R., Xia, H., Jie, Z., Wen, B., Chen, X., Yan, W., Fan, Y., et l., 2016. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 6, 22525
    Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H.K., et l., 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262-266
    Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., et l., 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962-968
    GBD 2017 Causes of Death Collaborators, 2018. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017:a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736-1788
    GBD 2017 DALYs and HALE Collaborators, 2018. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017:a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1859-1922
    Heck, K.L., van Belle, G., Simberloff, D., 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459-1461
    Heinze, G., 2006. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat. Med. 25, 4216-4226
    Jie, Z., Xia, H., Zhong, S.L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., et l., 2017. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845
    Kaakoush, N.O., 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5, 84
    Karakas, M., Schulte, C., Appelbaum, S., Ojeda, F., Lackner, K.J., Munzel, T., Schnabel, R.B., Blankenberg, S., Zeller, T., 2017. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart J. 38, 516-523
    Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et l., 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576-585
    Kostic, A.D., Xavier, R.J., Gevers, D., 2014. The microbiome in inflammatory bowel disease:current status and the future ahead. Gastroenterology 146, 1489-1499
    Kurilshikov, A., van den Munckhof, I.C.L., Chen, L., Bonder, M.J., Schraa, K., Rutten, J.H.W., Riksen, N.P., de Graaf, J., Oosting, M., Sanna, S., et l., 2019. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk. Circ. Res. 124, 1808-1820
    Lippert, K., Kedenko, L., Antonielli, L., Kedenko, I., Gemeier, C., Leitner, M., Kautzky-Willer, A., Paulweber, B., Hackl, E., 2017. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 8, 545-556
    Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., Pang, H., Jiang, L., Qiu, B., Chen, X., et l., 2019. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68
    Lozupone, C., Knight, R., 2005. UniFrac:a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235
    Luo, P., Yin, P., Zhang, W., Zhou, L., Lu, X., Lin, X., Xu, G., 2016. Optimization of large-scale pseudotargeted metabolomics method based on liquid chromatography-mass spectrometry. J. Chromatogr. A 1437, 127-136
    Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H., et l., 2018. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623-628
    McArdle, B.H., Anderson, M.J., 2001. Fitting multivariate models to community data:a comment on distance-based redundancy analysis. Ecology 82, 290-297
    McMurdie, P.J., Holmes, S., 2013. phyloseq:an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217
    Metghalchi, S., Ponnuswamy, P., Simon, T., Haddad, Y., Laurans, L., Clement, M., Dalloz, M., Romain, M., Esposito, B., Koropoulis, V., et l., 2015. Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metabol. 22, 460-471
    Montalescot, G., Sechtem, U., Achenbach, S., Andreotti, F., Arden, C., Budaj, A., Bugiardini, R., Crea, F., Cuisset, T., Di Mario, C., et l., 2013. 2013 ESC guidelines on the management of stable coronary artery disease:the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 34, 2949-3003
    Morgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., Reyes, J.A., Shah, S.A., LeLeiko, N., Snapper, S.B., et l., 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79
    Nistal, E., Caminero, A., Vivas, S., Ruiz de Morales, J.M., Saenz de Miera, L.E., Rodriguez-Aparicio, L.B., Casqueiro, J., 2012. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94, 1724-1929
    Pan, Y., Wang, F., Sun, D.W., Li, Q., 2016. Intestinal Lactobacillus community structure and its correlation with diet of Southern Chinese elderly subjects. J. Microbiol. 54, 594-601
    Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D.T., Beghini, F., Malik, F., Ramos, M., Dowd, J.B., et l., 2017. Accessible, curated metagenomic data through ExperimentHub. Nat. Methods 14, 1023-1024
    Ponnusamy, K., Choi, J.N., Kim, J., Lee, S.Y., Lee, C.H., 2011. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 60, 817-827
    Puelacher, C., Gugala, M., Adamson, P.D., Shah, A., Chapman, A.R., Anand, A., Sabti, Z., Boeddinghaus, J., Nestelberger, T., Twerenbold, R., et l., 2019. Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart 105, 1423-1431
    Ryan, P.M., London, L.E., Bjorndahl, T.C., Mandal, R., Murphy, K., Fitzgerald, G.F., Shanahan, F., Ross, R.P., Wishart, D.S., Caplice, N.M., et l., 2017. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/- mice. Microbiome 5, 30
    Schiattarella, G.G., Sannino, A., Toscano, E., Giugliano, G., Gargiulo, G., Franzone, A., Trimarco, B., Esposito, G., Perrino, C., 2017. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker:a systematic review and dose-response meta-analysis. Eur. Heart J. 38, 2948-2956
    Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., Huttenhower, C., 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811-814
    Shade, A., 2017. Diversity is the question, not the answer. ISME J. 11, 1-6
    Si, J., Lee, C., Ko, G., 2017. Oral Microbiota:microbial biomarkers of metabolic syndrome independent of host genetic factors. Front. Cell. Infect. Microbiol. 7, 516
    Sturino, J.M., 2018. Literature-based safety assessment of an agriculture- and animal-associated microorganism:Weissella confusa. Regul. Toxicol. Pharmacol. 95, 142-152
    Tang, W.H.W., Backhed, F., Landmesser, U., Hazen, S.L., 2019. Intestinal microbiota in cardiovascular health and disease:JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 73, 2089-2105
    Tellez, A., Ambrosioni, J., Llopis, J., Pericas, J.M., Falces, C., Almela, M., Garcia de la Maria, C., Hernandez-Meneses, M., Vidal, B., Sandoval, E., et l., 2018. Epidemiology, clinical Features, and outcome of infective endocarditis due to Abiotrophia species and Granulicatella species:report of 76 cases, 2000-2015. Clin. Infect. Dis. 66, 104-111
    Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et l., 2009. A core gut microbiome in obese and lean twins. Nature 457, 480-484
    Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt E.B., Fu, X., Chung, Y.M., et l., 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57-63
    Wilck, N., Matus, M.G., Kearney, S.M., Olesen, S.W., Forslund, K., Bartolomaeus, H., Haase, S., Mahler, A., Balogh, A., Marko, L., et l., 2017. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585-589
    Wu, Y., Chi, X., Zhang, Q., Chen, F., Deng, X., 2018. Characterization of the salivary microbiome in people with obesity. PeerJ 6, e4458
    Wurtz, P., Havulinna, A.S., Soininen, P., Tynkkynen, T., Prieto-Merino, D., Tillin, T., Ghorbani, A., Artati, A., Wang, Q., Tiainen, M., et l., 2015. Metabolite profiling and cardiovascular event risk:a prospective study of 3 population-based cohorts. Circulation 131, 774-785
    Yoshida, N., Emoto, T., Yamashita, T., Watanabe, H., Hayashi, T., Tabata, T., Hoshi, N., Hatano, N., Ozawa, G., Sasaki, N., et l., 2018. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 138, 2486-2498
    Zhao, L., 2013. The gut microbiota and obesity:from correlation to causality. Nat. Rev. Microbiol. 11, 639-647
    Zhao, X., Zeng, Z., Chen, A., Lu, X., Zhao, C., Hu, C., Zhou, L., Liu, X., Wang, X., Hou, X., et l., 2018. Comprehensive strategy to construct in-house database for accurate and batch identification of small molecular metabolites. Anal. Chem. 90, 7635-7643
    Zhu, Q., Gao, R., Zhang, Y., Pan, D., Zhu, Y., Zhang, X., Yang, R., Jiang, R., Xu, Y., Qin, H., 2018. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol. Genom. 50, 893-903
    Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., et l., 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111-124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (247) PDF downloads (11) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return