Aging Atlas Consortium, 2021. Aging Atlas:a multi-omics database for aging biology. Nucleic Acids Res. 49, D825-D830
|
Ahmed, M.A., O'Callaghan, C., Chang, E.D., Jiang, H.,Vassilopoulos, A., 2020. Context-dependent roles for SIRT2 and SIRT3 in tumor development upon calorie restriction or high fat diet. Front. Oncol. 9, 1462
|
Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X.,Finkel, T., 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105, 14447-14452
|
Anderson, K.A., Huynh, F.K., Fisher-Wellman, K., Stuart, J.D., Peterson, B.S., Douros, J.D., Wagner, G.R., Thompson, J.W., Madsen, A.S.,Green, M.F., 2017. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25, 838-855. e815
|
Bando, H., Atsumi, T., Nishio, T., Niwa, H., Mishima, S., Shimizu, C., Yoshioka, N., Bucala, R.,Koike, T., 2005. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784-5792
|
Bao, X., Wang, Y., Li, X., Li, X.-M., Liu, Z., Yang, T., Wong, C.F., Zhang, J., Hao, Q.,Li, X.D., 2014. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife 3, e02999
|
Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., Greco, V., Maggiolini, M., Feraco, E.,Mari, V., 2005. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258-263
|
Bergmann, L., Lang, A., Bross, C., Altinoluk-Hambuchen, S., Fey, I., Overbeck, N., Stefanski, A., Wiek, C., Kefalas, A.,Verhulsdonk, P., 2020. Subcellular localization and mitotic interactome analyses identify SIRT4 as a centrosomally localized and microtubule associated protein. Cells 9, 1950
|
Bharathi, S.S., Zhang, Y., Mohsen, A.-W., Uppala, R., Balasubramani, M., Schreiber, E., Uechi, G., Beck, M.E., Rardin, M.J.,Vockley, J., 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288, 33837-33847
|
Bi, S., Liu, Z., Wu, Z., Wang, Z., Liu, X., Wang, S., Ren, J., Yao, Y., Zhang, W.,Song, M., 2020. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein & cell 11, 483-504
|
Bonkowski, M.S.,Sinclair, D.A., 2016. Slowing ageing by design:the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Bio. 17, 679-690
|
Braidy, N., Poljak, A., Grant, R., Jayasena, T., Mansour, H., Chan-Ling, T., Smythe, G., Sachdev, P.,Guillemin, G.J., 2015. Differential expression of sirtuins in the aging rat brain. Front. Cell. Neurosci. 9, 167
|
Bringman-Rodenbarger, L.R., Guo, A.H., Lyssiotis, C.A.,Lombard, D.B., 2018. Emerging roles for SIRT5 in metabolism and cancer. Antioxid. Redox Signal. 28, 677-690
|
Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D.T.,Chen, D., 2013. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319-327
|
Brunn, G.J., Hudson, C.C., Sekulic, A., Williams, J.M., Hosoi, H., Houghton, P.J., Lawrence, J.C.,Abraham, R.T., 1997. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99-101
|
Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P.,Auwerx, J., 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060
|
Chavez, J.A., Roach, W.G., Keller, S.R., Lane, W.S.,Lienhard, G.E., 2008. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J. Biol. Chem. 283, 9187-9195
|
Chen, C., Liu, Y., Liu, Y.,Zheng, P., 2009. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75-ra75
|
Chen, T., Liu, J., Li, N., Wang, S., Liu, H., Li, J., Zhang, Y.,Bu, P., 2015. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10, e0118909
|
Cheng, Y., Ren, X., Gowda, A.S., Shan, Y., Zhang, L., Yuan, Y., Patel, R., Wu, H., Huber-Keener, K.,Yang, J., 2013. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 4, e731-e731
|
Chu, Q., L, F., He, Y., Jiang, X., Cai, Y., Wu, Z., Yan, K., Geng, L., Zhang, Y., Feng, H., et al., 2021. mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells. Protein & Cell In Press
|
Cimen, H., Han, M.-J., Yang, Y., Tong, Q., Koc, H.,Koc, E.C., 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-311
|
Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R.,Sinclair, D.A., 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392
|
Corona, J.C.,Duchen, M.R., 2015. PPARγ and PGC-1α as therapeutic targets in Parkinson's. Neurochem. Res. 40, 308-316
|
Csibi, A., Fendt, S.-M., Li, C., Poulogiannis, G., Choo, A.Y., Chapski, D.J., Jeong, S.M., Dempsey, J.M., Parkhitko, A.,Morrison, T., 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854
|
Cui, X.-X., Li, X., Dong, S.-Y., Guo, Y.-J., Liu, T.,Wu, Y.-C., 2017. SIRT3 deacetylated and increased citrate synthase activity in PD model. Biochem. Biophys. Res. Commun. 484, 767-773
|
Dai, S.-H., Chen, T., Wang, Y.-H., Zhu, J., Luo, P., Rao, W., Yang, Y.-F., Fei, Z.,Jiang, X.-F., 2014. Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2 and mitochondrial biogenesis. Int. J. Mol. Sci. 15, 14591-14609
|
Das, S., Mitrovsky, G., Vasanthi, H.R.,Das, D.K., 2014. Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid. Med. Cell Longev. 2014
|
DeBerardinis, R.J.,Chandel, N.S., 2016. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200
|
Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang, Q.,Bi, S., 2021. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203-4219
|
Diaz-Canestro, C., Merlini, M., Bonetti, N.R., Liberale, L., Wust, P., Briand-Schumacher, S., Klohs, J., Costantino, S., Miranda, M.,Schoedon-Geiser, G., 2018. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int. J. Cardiol. 260, 148-155
|
Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H.,Choi, B.H., 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809
|
Fan, J., Shan, C., Kang, H.-B., Elf, S., Xie, J., Tucker, M., Gu, T.-L., Aguiar, M., Lonning, S.,Chen, H., 2014. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534-548
|
Feldeisen, S.E.,Tucker, K.L., 2007. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl. Physiol. Nutr. Metab. 32, 46-60
|
Finkel, T., Deng, C.-X.,Mostoslavsky, R., 2009. Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591
|
Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., Van De Rijn, M., Rosen, G.D., Perou, C.M.,Whyte, R.I., 2001. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. U. S. A. 98, 13784-13789
|
Geng, L., Liu, Z., Wang, S., Sun, S., Ma, S., Liu, X., Chan, P., Sun, L., Song, M.,Zhang, W., 2019. Low-dose quercetin positively regulates mouse healthspan. Protein & cell 10, 770-775
|
George, J., Nihal, M., Singh, C.K., Ahmad, N., 2019. 4'-Bromo-resveratrol, a dual Sirtuin-1 and Sirtuin-3 inhibitor, inhibits melanoma cell growth through mitochondrial metabolic reprogramming. Mol Carcinog 58, 1876-1885
|
Gertz, M.,Steegborn, C., 2016. Using mitochondrial sirtuins as drug targets:disease implications and available compounds. Cell Mol. Life Sci. 73, 2871-2896
|
Giblin, W., Bringman-Rodenbarger, L., Guo, A.H., Kumar, S., Monovich, A.C., Mostafa, A.M., Skinner, M.E., Azar, M., Mady, A.S.,Chung, C.H., 2021. The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. J. Clin. Investig
|
Giblin, W., Skinner, M.E.,Lombard, D.B., 2014. Sirtuins:guardians of mammalian healthspan. Trends Genet. 30, 271-286
|
Guedouari, H., Daigle, T., Scorrano, L.,Hebert-Chatelain, E., 2017. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim. Biophys. Acta. Mol. Cell. Res. 1864, 169-176
|
Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M.,Blander, G., 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941-954
|
Hallows, W.C., Lee, S.,Denu, J.M., 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A. 103, 10230-10235
|
Hallows, W.C., Yu, W., Smith, B.C., Devires, M.K., Ellinger, J.J., Someya, S., Shortreed, M.R., Prolla, T., Markley, J.L.,Smith, L.M., 2011. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139-149
|
Han, Y., Zhou, S., Coetzee, S.,Chen, A., 2019. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front. Physiol. 10, 1006
|
He, X., Memczak, S., Qu, J., Belmonte, J.C.I.,Liu, G.-H., 2020. Single-cell omics in ageing:a young and growing field. Nat. Metab. 2, 293-302
|
Herzig, S.,Shaw, R.J., 2018. AMPK:guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Bio. 19, 121-135
|
Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S.,Ilkayeva, O.R., 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125
|
Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M.M.,Schwer, B., 2011. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell. 44, 177-190
|
Hoxhaj, G.,Manning, B.D., 2020. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74-88
|
Huang, G.,Zhu, G., 2018. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. Onco Targets Ther 11, 3395
|
Inoki, K., Kim, J.,Guan, K.-L., 2012. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381-400
|
Inoki, K., Zhu, T.,Guan, K.-L., 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590
|
Jeong, S.M., Xiao, C., Finley, L.W., Lahusen, T., Souza, A.L., Pierce, K., Li, Y.-H., Wang, X., Laurent, G.,German, N.J., 2013. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450-463
|
Jing, E., Emanuelli, B., Hirschey, M.D., Boucher, J., Lee, K.Y., Lombard, D., Verdin, E.M.,Kahn, C.R., 2011. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 108, 14608-14613
|
Jing, E., O'Neill, B.T., Rardin, M.J., Kleinridders, A., Ilkeyeva, O.R., Ussar, S., Bain, J.R., Lee, K.Y., Verdin, E.M.,Newgard, C.B., 2013. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404-3417
|
Kang, W., Jin, T., Zhang, T., Ma, S., Yan, H., Liu, Z., Ji, Z., Cai, Y., Wang, S.,Song, M., 2022. Regeneration Roadmap:database resources for regenerative biology. Nucleic Acids Res
|
Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V.,Benzer, S., 2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890
|
Koundouros, N.,Poulogiannis, G., 2018. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front. Oncol. 8, 160
|
Kumar, S.,Lombard, D.B., 2015. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid. Redox Signal. 22, 1060-1077
|
Lamming, D.W., Ye, L., Katajisto, P., Goncalves, M.D., Saitoh, M., Stevens, D.M., Davis, J.G., Salmon, A.B., Richardson, A.,Ahima, R.S., 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638-1643
|
Lan, F., Cacicedo, J.M., Ruderman, N.,Ido, Y., 2008. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1:possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635
|
Lang, A., Anand, R., Altinoluk-Hambuchen, S., Ezzahoini, H., Stefanski, A., Iram, A., Bergmann, L., Urbach, J., Bohler, P.,Hansel, J., 2017. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY) 9, 2163
|
Laurent, G., Boer, V.C.J.d., Finley, L.W.S., Sweeney, M., Lu, H., Schug, T.T., Cen, Y., Jeong, S.M., Li, X., Sauve, A.A., et al., 2013a. SIRT4 Represses Peroxisome Proliferator-Activated Receptor α Activity To Suppress Hepatic Fat Oxidation. Mol. Cell Biol. 33, 4552-4561
|
Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies, M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G.,Vaitheesvaran, B., 2013b. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686-698
|
Lescai, F., Blanche, H., Nebel, A., Beekman, M., Sahbatou, M., Flachsbart, F., Slagboom, E., Schreiber, S., Sorbi, S.,Passarino, G., 2009. Human longevity and 11p15. 5:a study in 1321 centenarians. Eur. J. Hum. Genet. 17, 1515-1519
|
Li, Q., Wang, H., Zhang, J., Kong, A.P.-s., Li, G., Lam, T.-p., Cheng, J.C.-y.,Lee, W.Y.-w., 2021. Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice. Bone 144, 115827
|
Li, S., Dou, X., Ning, H., Song, Q., Wei, W., Zhang, X., Shen, C., Li, J., Sun, C.,Song, Z., 2017. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66, 936-952
|
Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E.,Shyy, J.Y.-J., 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388
|
Li, Y., Zhang, W., Chang, L., Han, Y., Sun, L., Gong, X., Tang, H., Liu, Z., Deng, H.,Ye, Y., 2016. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein & cell 7, 478-488
|
Liang, F., Wang, X., Ow, S.H., Chen, W.,Ong, W.C., 2017. Sirtuin 5 is anti-apoptotic and anti-oxidative in cultured SH-EP neuroblastoma cells. Neurotox. Res. 31, 63-76
|
Lin, Z.-F., Xu, H.-B., Wang, J.-Y., Lin, Q., Ruan, Z., Liu, F.-B., Jin, W., Huang, H.-H.,Chen, X., 2013. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun. 441, 191-195
|
Ling, W., Krager, K., Richardson, K.K., Warren, A.D., Ponte, F., Aykin-Burns, N., Manolagas, S.C., Almeida, M.,Kim, H.-N., 2021. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI insight 6
|
Liszt, G., Ford, E., Kurtev, M.,Guarente, L., 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320
|
Liu, B., Che, W., Xue, J., Zheng, C., Tang, K., Zhang, J., Wen, J.,Xu, Y., 2013a. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol. Biochem. 32, 655-662
|
Liu, B., Che, W., Zheng, C., Liu, W., Wen, J., Fu, H., Tang, K., Zhang, J.,Xu, Y., 2013b. SIRT5:a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol. Biochem. 32, 1050-1059
|
Liu, G.Y.,Sabatini, D.M., 2020. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183-203
|
Liu, L., Peritore, C., Ginsberg, J., Shih, J., Arun, S.,Donmez, G., 2015a. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease. Behav. Brain Res. 281, 215-221
|
Liu, Y., Tang, G., Zhang, Z., Wang, Y.,Yang, G.-Y., 2014. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci. Lett. 579, 46-51
|
Liu, Z.P., Geng, L.L., Sun, L., Wang, Q., Yu, Y., Yan, P., Chuqian Liang, J.R., Song, M., Ji, Q., Lei, J., Cai, Y., Li, J., Yan, K., Chu, Q., Li, J., Wang, S., Li, C., Jing-DongHan, J., Reyna Hernandez-Benitez, N.S.-C., Belmonte, J. C., Zhang, W.Q., Qu, J., Liu, G.-H., 2022. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery. https://doi.org/10.1038/s41421-021-00361-3. In press
|
Liu, Y.J., McIntyre, R.L., Janssens, G.E.,Houtkooper, R.H., 2020. Mitochondrial fission and fusion:A dynamic role in aging and potential target for age-related disease. Mech. Ageing Dev. 186, 111212
|
Lombard, D.B., Alt, F.W., Cheng, H.-L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D.,Murphy, A., 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807-8814
|
Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M.,Kroemer, G., 2013. The hallmarks of aging. Cell 153, 1194-1217
|
Lopez-Otin, C., Galluzzi, L., Freije, J.M., Madeo, F.,Kroemer, G., 2016. Metabolic control of longevity. Cell 166, 802-821
|
Luo, Y.-X., Tang, X., An, X.-Z., Xie, X.-M., Chen, X.-F., Zhao, X., Hao, D.-L., Chen, H.-Z.,Liu, D.-P., 2017. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J. 38, 1389-1398
|
Ma, S., Sun, S., Geng, L., Song, M., Wang, W., Ye, Y., Ji, Q., Zou, Z., Wang, S.,He, X., 2020. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984-1001. e1022
|
Martini, M., De Santis, M.C., Braccini, L., Gulluni, F.,Hirsch, E., 2014. PI3K/AKT signaling pathway and cancer:an updated review. Ann. Med. 46, 372-383
|
Mathias, R.A., Greco, T.M., Oberstein, A., Budayeva, H.G., Chakrabarti, R., Rowland, E.A., Kang, Y., Shenk, T.,Cristea, I.M., 2014. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615-1625
|
Matsushita, N., Yonashiro, R., Ogata, Y., Sugiura, A., Nagashima, S., Fukuda, T., Inatome, R.,Yanagi, S., 2011. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 16, 190-202
|
McDonnell, E., Peterson, B.S., Bomze, H.M.,Hirschey, M.D., 2015. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol. Metab. 26, 486-492
|
Mendoza, M.C., Er, E.E.,Blenis, J., 2011. The Ras-ERK and PI3K-mTOR pathways:cross-talk and compensation. Trends Biochem. Sci. 36, 320-328
|
Meng, H., Yan, W.-Y., Lei, Y.-H., Wan, Z., Hou, Y.-Y., Sun, L.-K.,Zhou, J.-P., 2019. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front. Aging Neurosci. 11, 313
|
Min, Z., Gao, J.,Yu, Y., 2019. The roles of mitochondrial SIRT4 in cellular metabolism. Front. Endocrinol. (Lausanne) 9, 783
|
Morigi, M., Perico, L., Rota, C., Longaretti, L., Conti, S., Rottoli, D., Novelli, R., Remuzzi, G.,Benigni, A., 2015. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Investig. 125, 715-726
|
Nakagawa, T.,Guarente, L., 2011. Sirtuins at a glance. J. Cell Sci. 124, 833-838
|
Nakagawa, T., Lomb, D.J., Haigis, M.C.,Guarente, L., 2009. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560-570
|
Ng, T., Leprivier, G., Robertson, M., Chow, C., Martin, M., Laderoute, K., Davicioni, E., Triche, T.,Sorensen, P., 2012. The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ. 19, 501-510
|
Nishida, Y., Rardin, M.J., Carrico, C., He, W., Sahu, A.K., Gut, P., Najjar, R., Fitch, M., Hellerstein, M.,Gibson, B.W., 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59, 321-332
|
Novgorodov, S.A., Riley, C.L., Keffler, J.A., Yu, J., Kindy, M.S., Macklin, W.B., Lombard, D.B.,Gudz, T.I., 2016. SIRT3 deacetylates ceramide synthases:implications for mitochondrial dysfunction and brain injury. J Biol. Chem. 291, 1957-1973
|
Ogura, Y., Kitada, M., Monno, I., Kanasaki, K., Watanabe, A.,Koya, D., 2018. Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Report 23, 153-159
|
Oh, W.J., Wu, C.c., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B.,Jacinto, E., 2010. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. The EMBO J. 29, 3939-3951
|
Oldham, S., 2011. High fat diet induced obesity and nutrient sensing TOR signaling. Trends in endocrinology and metabolism:TEM 22, 45
|
Pan, H., Guan, D., Liu, X., Li, J., Wang, L., Wu, J., Zhou, J., Zhang, W., Ren, R.,Zhang, W., 2016. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 26, 190-205
|
Papa, L.,Germain, D., 2014. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 34, 699-710
|
Park, J., Chen, Y., Tishkoff, D.X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B.M.,Skinner, M.E., 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919-930
|
Partridge, L., Deelen, J.,Slagboom, P.E., 2018. Facing up to the global challenges of ageing. Nature 561, 45-56
|
Patel, M.,Korotchkina, L., 2006. Regulation of the pyruvate dehydrogenase complex. Biochem. Soc. Trans. 34, 217-222
|
Picca, A., Mankowski, R.T., Burman, J.L., Donisi, L., Kim, J.-S., Marzetti, E.,Leeuwenburgh, C., 2018. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 15, 543-554
|
Qiu, X., Brown, K., Hirschey, M.D., Verdin, E.,Chen, D., 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662-667
|
Ramadani-Muja, J., Gottschalk, B., Pfeil, K., Burgstaller, S., Rauter, T., Bischof, H., Waldeck-Weiermair, M., Bugger, H., Graier, W.F.,Malli, R., 2019. Visualization of sirtuin 4 distribution between mitochondria and the nucleus, based on bimolecular fluorescence self-complementation. Cells 8, 1583
|
Rardin, M.J., He, W., Nishida, Y., Newman, J.C., Carrico, C., Danielson, S.R., Guo, A., Gut, P., Sahu, A.K.,Li, B., 2013a. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920-933
|
Rardin, M.J., Newman, J.C., Held, J.M., Cusack, M.P., Sorensen, D.J., Li, B., Schilling, B., Mooney, S.D., Kahn, C.R.,Verdin, E., 2013b. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 110, 6601-6606
|
Ren, R., Ocampo, A., Liu, G.-H.,Belmonte, J.C.I., 2017. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 26, 460-474
|
Roth, M.,Chen, W., 2014. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609-1620
|
Sadhukhan, S., Liu, X., Ryu, D., Nelson, O.D., Stupinski, J.A., Li, Z., Chen, W., Zhang, S., Weiss, R.S.,Locasale, J.W., 2016. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. P Proc. Natl. Acad. Sci. U. S. A. 113, 4320-4325
|
Saggerson, D., 2008. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 28, 253-272
|
Salminen, A., Hyttinen, J.M.,Kaarniranta, K., 2011. AMP-activated protein kinase inhibits NF-κB signaling and inflammation:impact on healthspan and lifespan. J. Mol. Med. 89, 667-676
|
Salminen, A.,Kaarniranta, K., 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230-241
|
Samant, S.A., Zhang, H.J., Hong, Z., Pillai, V.B., Sundaresan, N.R., Wolfgeher, D., Archer, S.L., Chan, D.C.,Gupta, M.P., 2014. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell Biol. 34, 807-819
|
Saxton, R.A.,Sabatini, D.M., 2017. mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976
|
Scher, M.B., Vaquero, A.,Reinberg, D., 2007. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920-928
|
Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S.,Verdin, E., 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A. 103, 10224-10229
|
Seo, D.-B., Jeong, H.W., Lee, S.-J.,Lee, S.-J., 2014. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. J. Agric. Food Chem. 62, 4298-4305
|
Shan, H., Geng, L., Jiang, X., Song, M., Wang, J., Liu, Z., Zhuo, X., Wu, Z., Hu, J.,Ji, Z., 2021. Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein & Cell, 1-8
|
Shi, H., Deng, H.-X., Gius, D., Schumacker, P.T., Surmeier, D.J.,Ma, Y.-C., 2017. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum. Mol. Genet. 26, 1915-1926
|
Shimazu, T., Hirschey, M.D., Hua, L., Dittenhafer-Reed, K.E., Schwer, B., Lombard, D.B., Li, Y., Bunkenborg, J., Alt, F.W.,Denu, J.M., 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654-661
|
Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M.,Prolla, T.A., 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812
|
Song, W., Song, Y., Kincaid, B., Bossy, B.,Bossy-Wetzel, E., 2013. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons:neuroprotection by SIRT3 and PGC-1α. Neurobiol. Dis. 51, 72-81
|
Sun, N., Youle, R.J.,Finkel, T., 2016. The mitochondrial basis of aging. Mol Cell 61, 654-666
|
Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A.,Gupta, M.P., 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Investig. 119, 2758-2771
|
Sweeney, G.,Song, J., 2016. The association between PGC-1α and Alzheimer's disease. Anat. Cell Biol. 49, 1-6
|
Tomaselli, D., Steegborn, C., Mai, A.,Rotili, D., 2020. Sirt4:a multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Front. Oncol. 10, 474
|
Torrens-Mas, M., Oliver, J., Roca, P.,Sastre-Serra, J., 2017. SIRT3:oncogene and tumor suppressor in cancer. Cancers (Basel) 9, 90
|
Van de Ven, R.A., Santos, D.,Haigis, M.C., 2017. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med. 23, 320-331
|
Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L.,Muller, F., 2003. Influence of TOR kinase on lifespan in C. elegans. Nature 426, 620-620
|
Villena, J.A., 2015. New insights into PGC-1 coactivators:redefining their role in the regulation of mitochondrial function and beyond. The FEBS journal 282, 647-672
|
Wang, C.-H.,Wei, Y.-H., 2020. Roles of mitochondrial sirtuins in mitochondrial function, redox homeostasis, insulin resistance and type 2 diabetes. Int. J. Mol. Sci. 21, 5266
|
Wang, F., Wang, K., Xu, W., Zhao, S., Ye, D., Wang, Y., Xu, Y., Zhou, L., Chu, Y.,Zhang, C., 2017. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell reports 19, 2331-2344
|
Wang, L., Zhou, H., Wang, Y., Cui, G.,Di, L., 2015. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis. 6, e1620-e1620
|
Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., Liu, Z., Min, Z., Hu, H.,Jing, Y., 2020. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585-600. e519
|
Wang, W., Zheng, Y., Sun, S., Li, W., Song, M., Ji, Q., Wu, Z., Liu, Z., Fan, Y.,Liu, F., 2021. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13
|
Weir, H.J., Murray, T.K., Kehoe, P.G., Love, S., Verdin, E.M., O'Neill, M.J., Lane, J.D.,Balthasar, N., 2012. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS One 7, e48225
|
Winzell, M.S.,Ahren, B., 2004. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53, S215-S219
|
Wu, Y.-T., Lee, H.-C., Liao, C.-C.,Wei, Y.-H., 2013. Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta Mol Basis Dis. 1832, 216-227
|
Xiangyun, Y., Xiaomin, N., 2017. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8, 6984
|
Yan, D., Franzini, A., Pomicter, A.D., Halverson, B.J., Antelope, O., Mason, C.C., Ahmann, J.M., Senina, A.V., Vellore, N.A.,Jones, C.L., 2021. SIRT5 is a druggable metabolic vulnerability in acute myeloid leukemia. Blood cancer discovery 2, 266
|
Yang, W., Nagasawa, K., Munch, C., Xu, Y., Satterstrom, K., Jeong, S., Hayes, S.D., Jedrychowski, M.P., Vyas, F.S.,Zaganjor, E., 2016. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985-1000. e1021
|
Ye, X., Niu X., Gu, L., Xu, Y., Li, Z., Yu, Y., Chen, Z., Lu, S., 2017. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8, 6984-6993
|
Yin, J., Han, P., Song, M., Nielsen, M., Beach, T.G., Serrano, G.E., Liang, W.S., Caselli, R.J.,Shi, J., 2018. Amyloid-β increases tau by mediating sirtuin 3 in Alzheimer's disease. Mol. Neurobiol. 55, 8592-8601
|
Yu, J., Sadhukhan, S., Noriega, L.G., Moullan, N., He, B., Weiss, R.S., Lin, H., Schoonjans, K.,Auwerx, J., 2013. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 1-7
|
Yu, W., Dittenhafer-Reed, K.E.,Denu, J.M., 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287, 14078-14086
|
Zeng, J., Jiang, M., Wu, X., Diao, F., Qiu, D., Hou, X., Wang, H., Li, L., Li, C.,Ge, J., 2018. SIRT 4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging cell 17, e12789
|
Zhang, J., Xiang, H., Liu, J., Chen, Y., He, R.-R.,Liu, B., 2020. Mitochondrial Sirtuin 3:New emerging biological function and therapeutic target. Theranostics 10, 8315
|
Zhang, J., Zhu, Y., Zhan, G., Fenik, P., Panossian, L., Wang, M.M., Reid, S., Lai, D., Davis, J.G.,Baur, J.A., 2014. Extended wakefulness:compromised metabolics in and degeneration of locus ceruleus neurons. J. Neurosci. 34, 4418-4431
|
Zhang, Y., Bharathi, S.S., Rardin, M.J., Lu, J., Maringer, K.V., Sims-Lucas, S., Prochownik, E.V., Gibson, B.W.,Goetzman, E.S., 2017. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292, 10239-10249
|
Zhang, Y., Bharathi, S.S., Rardin, M.J., Uppala, R., Verdin, E., Gibson, B.W.,Goetzman, E.S., 2015. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One 10, e0122297
|
Zhong, L., D'Urso, A., Toiber, D., Sebastian, C., Henry, R.E., Vadysirisack, D.D., Guimaraes, A., Marinelli, B., Wikstrom, J.D.,Nir, T., 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280-293
|
Zhou, L., Wang, F., Sun, R., Chen, X., Zhang, M., Xu, Q., Wang, Y., Wang, S., Xiong, Y.,Guan, K.L., 2016a. SIRT 5 promotes IDH 2 desuccinylation and G6 PD deglutarylation to enhance cellular antioxidant defense. EMBO reports 17, 811-822
|
Zhu, J.,Thompson, C.B., 2019. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436-450
|
Zhu, J., Wang, K.Z.,Chu, C.T., 2013. After the banquet:mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663-1676
|