5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 3
Mar.  2022
Turn off MathJax
Article Contents

New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China

doi: 10.1016/j.jgg.2021.11.004
Funds:

We are grateful to Dr. Le Wang (Jilin University) for the improvement with the manuscript. This work was supported by the National Natural Science Foundation of China (32001492), the Ministry of Agriculture of China (2016ZX08009) and the Natural Science Foundation of Henan (202300410053).

  • Received Date: 2021-08-29
  • Accepted Date: 2021-11-10
  • Rev Recd Date: 2021-11-06
  • Publish Date: 2021-11-24
  • Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.
  • loading
  • Aghaei, M.J., Mozafari, J., Taleei, A.R., Naghavi, M.R., Omidi, M., 2008. Distribution and diversity of Aegilops tauschii in Iran. Genet. Resour. Crop Evol. 55, 341-349
    Cui, Y., Zhang, Y., Qi, J., Wang, H., Wang, R.R.C., Bao, Y., Li, X., 2018. Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 61, 515-521
    Dudnikov, A.J., 2000. Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet. Resour. Crop Evol. 47, 185-190
    Dudnikov, A.J., 1998. Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80, 248-258
    Dvorak, J., Luo, M.C., Yang, Z.L., Zhang, H.B., 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97, 657-670
    Eig, A., 1929. Monographisch-kritische Ubersicht der Gattung Aegilops. Feddes Repert. Specierum Nov. Regni Veg. Belh. 55, 1-228
    Gaurav, K., Arora, S., Silva, P., Sanchez-martin, J., Gao, L., Brar, G.S., Widrig, V., Raupp, J., Simmonds, J., Hayta, S., Smedley, M.A., Harwood, W., 2021. Evolution of the bread wheat D-subgenome and enriching it with diversity from Aegilops tauschii. bioRxiv. https://doi.org/10.1101/2021.01.31.428788
    Kihara, H., 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare wheats. Agric. Hortic. 19, 889-890
    Kihara, H., 1958. Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan, and Iran. Preslia 30, 241-251
    Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., Hakan, O., 2011. Aegilops. In:Kole C. (Ed.) Wild Crop Relatives:Genomic and Breeding Resources, Cereals. Springer, Berlin Heidelberg, pp. 1-76
    Kishii, M., 2019. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10:585
    Komuro, S., Endo, R., Shikata, K., Kato, A., 2013. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56, 131-137
    Li, H., Deal, K.R., Luo, M.C., Ji, W., Distelfeld, A., Dvorak, J., 2017. Introgression of the Aegilops speltoides Su1-Ph1 suppressor into wheat. Front. Plant Sci. 8, 2163
    Li, H., Wang, L., Luo, M.C., Nie, F., Zhou, Y., McGuire, P.E., Distelfeld, A., Dai, X., Song, C.P., Dvorak, J., 2019. Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor. Theor. Appl. Genet. 132, 3265-3276
    Lubbers, E.L., Gill, K.S., Cox, T.S., Gill, B.S., 1991. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34, 354-361
    Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., Huo, N., Zhu, T., Wang, L., Wang, Y., McGuire, P.E., Liu, S., Long, H., Ramasamy, R.K., Rodriguez, J.C., Van Sonny, L., Yuan, L., Wang, Z., Xia, Z., Xiao, L., Anderson, O.D., Ouyang, S., Liang, Y., Zimin, A. V., Pertea, G., Qi, P., Bennetzen, J.L., Dai, X., Dawson, M.W., Muller, H.G., Kugler, K., Rivarola-Duarte, L., Spannagl, M., Mayer, K.F.X., Lu, F.H., Bevan, M.W., Leroy, P., Li, P., You, F.M., Sun, Q., Liu, Z., Lyons, E., Wicker, T., Salzberg, S.L., Devos, K.M., Dvoak, J., 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498-502
    Luo, M.C., Gu, Y.Q., You, F.M., Deal, K.R., Ma, Y., Hu, Y., Huo, N., Wang, Y., Wang, J., Chen, S., Jorgensen, C.M., Zhang, Y., McGuire, P.E., Pasternak, S., Stein, J.C., Ware, D., Kramer, M., McCombie, W.R., Kianian, S.F., Martis, M.M., Mayer, K.F.X., Sehgal, S.K., Li, W., Gill, B.S., Bevan, M.W., Simkova, H., Dolezel, J., Weining, S., Lazo, G.R., Anderson, O.D., Dvorak, J., 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc. Natl. Acad. Sci. U.S.A. 110, 7940-7945
    Mahjoob, M.M.M., Gorafi, Y.S.A., Kamal, N.M., Yamasaki, Y., Tahir, I.S.A., Matsuoka, Y., Tsujimoto, H., 2021. Genome-wide association study of morpho-physiological traits in Aegilops tauschii to broaden wheat genetic diversity. Plants 10, 211
    Matsuoka, Y., Nasuda, S., Ashida, Y., Nitta, M., Tsujimoto, H., Takumi, S., Kawahara, T., 2013. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 8, e68310
    Matsuoka, Y., Nishioka, E., Kawahara, T., Takumi, S., 2009. Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Systemat. Evol. 279, 233-244
    Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York
    Mcfadden, E.S., Sears, E.R., 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81-89
    Mizuno, N., Yamasaki, M., Matsuoka, Y., Kawahara, T., Takumi, S., 2010. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.:implications for intraspecific lineage diversification and evolution of common wheat. Mol. Ecol. 19, 999-1013
    Nakai, Y., 1979. Isozyme variations in Aegilops and Triticum. IV. The origin of the common wheats revealed from the study on esterase isozymes in synthesized hexaploid wheats. Jpn. J. Genet. 54, 175-189
    Rey, M.D., Martin, A.C., Higgins, J., Swarbreck, D., Uauy, C., Shaw, P., Moore, G., 2017. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 37, 95
    Sears, E.R., 1976. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31-51
    Sears, E.R., 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19:548-593
    Singh, N., Wu, S., Tiwari, V., Sehgal, S., Raupp, J., Wilson, D., Abbasov, M., Gill, B., Poland, J., 2019. Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Front. Plant Sci. 10, 9
    Su, Q., Liu, L., Zhao, M., Zhang, C., Zhang, D., Li, Y., Li, S., 2020. The complete chloroplast genomes of seventeen Aegilops tauschii:genome comparative analysis and phylogenetic inference. PeerJ 8, e8678
    Su, Y., Zhang, D., Xu, S., Gao, A., Li, S., 2010. Genetic diversity and differentiation in different Aegilops tauschii populations revealed by SSR. Acta Ecol. Sin. 30, 969-975
    Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N., Chen, F., 2020. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 18, 1354-1360
    Tanaka, M., 1983. Geographical distribution of Aegilops species based on collection at the plant germplasm institute, Kyoto university. In:Sakamoto S. (Ed.) Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 1009-1024
    Tang, Z., Yang, Z., Fu, S., 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313-318
    Van Slageren, M.W., 1994. Wild Wheats:a Monograph of Aegilops L. And Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen, Wageningen Agricultural University Papers, Wageningen, The Netherlands, pp. 94-97
    Wang, C.J., Zhang, L.Q., Dai, S.F., Zheng, Y.L., Zhang, H.G., Liu, D.C., 2010. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum ×Aegilops tauschii hybrids. Euphytica 175, 323-329
    Wang, J., Luo, M.C., Chen, Z., You, F.M., Wei, Y., Zheng, Y., Dvorak, J., 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198, 925-937
    Ward, R.W., Yang, Z.L., Kim, H.S., Yen, C., 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 96, 312-318
    Wei, H., Li, J., Peng, Z., Lu, B., Zhao, Z., Yang, W., 2008. Relationships of Aegilops tauschii revealed by DNA fingerprints:the evidence for agriculture exchange between China and the West. Prog. Nat. Sci. 18, 1525-1531
    Yen, C., Yang, J.L., Cui, N.R., Zhong, J.P., Dong, Y.S., Sun, Y.Z., Zhong, G.Y., 1984. The Aegilops tauschii cosson from Yi-Li, Xinjang, China. Acta Agron. Sin. 10, 1-7
    Yen, C., Yang, J.L., Liu, X.D., 1983. The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In:Sakamoto S. (Ed.) Proceedings of 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 55-58
    Zhang, C., Huang, L., Zhang, H., Hao, Q., Lyu, B., Wang, M., Epstein, L., Liu, M., Kou, C., Qi, J., Chen, F., Li, M., Gao, G., Ni, F., Zhang, L., Hao, M., Wang, J., Chen, X., Luo, M.C., Zheng, Y., Wu, J., Liu, D., Fu, D., 2019. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat. Commun. 10, 4023
    Zhang, D., He, J., Huang, L., Zhang, C., Zhou, Y., Su, Y., Li, S., 2017. An advanced backcross population through synthetic octaploid wheat as a "Bridge":development and QTL detection for seed dormancy. Front. Plant Sci. 8, 2123
    Zhang, D., Zhou, Y., Zhao, X., Lv, L., Zhang, C., Li, J., Sun, G., Li, S., Song, C., 2018. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii ×hexaploid wheat) as donor. Front. Plant Sci. 9, 1113
    Zhang, D., Su, Y., Li, Y., Wang, T., Li, S., 2012. Variation and correlation analysis of grain traits in the natural population of Aegilops tauschii. J. Triticeae Crop 32, 223-228
    Zhao, L., Ning, S., Yi, Y., Zhang, L., Yuan, Z., Wang, J., Zheng, Y., Hao, M., Liu, D., 2018. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genom. 19, 3
    Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Ying, Wang, Yuan ge, Liu, S., Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y., Lu, F., 2020. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412-1422
    Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., Lv, L., Zhu, L., Fan, R., Ge, Y., Shaheen, A., Guo, G., Zhang, Z., Ma, J., Liang, H., Qiu, X., Hu, J., Sun, T., Hou, J., Xu, H., Xue, S., Jiang, W., Huang, J., Li, S., Zou, C., Song, C.-P., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Native Plants 7, 774-786
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (466) PDF downloads (86) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return