Aghaei, M.J., Mozafari, J., Taleei, A.R., Naghavi, M.R., Omidi, M., 2008. Distribution and diversity of Aegilops tauschii in Iran. Genet. Resour. Crop Evol. 55, 341-349
|
Cui, Y., Zhang, Y., Qi, J., Wang, H., Wang, R.R.C., Bao, Y., Li, X., 2018. Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 61, 515-521
|
Dudnikov, A.J., 2000. Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet. Resour. Crop Evol. 47, 185-190
|
Dudnikov, A.J., 1998. Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80, 248-258
|
Dvorak, J., Luo, M.C., Yang, Z.L., Zhang, H.B., 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97, 657-670
|
Eig, A., 1929. Monographisch-kritische Ubersicht der Gattung Aegilops. Feddes Repert. Specierum Nov. Regni Veg. Belh. 55, 1-228
|
Gaurav, K., Arora, S., Silva, P., Sanchez-martin, J., Gao, L., Brar, G.S., Widrig, V., Raupp, J., Simmonds, J., Hayta, S., Smedley, M.A., Harwood, W., 2021. Evolution of the bread wheat D-subgenome and enriching it with diversity from Aegilops tauschii. bioRxiv. https://doi.org/10.1101/2021.01.31.428788
|
Kihara, H., 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare wheats. Agric. Hortic. 19, 889-890
|
Kihara, H., 1958. Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan, and Iran. Preslia 30, 241-251
|
Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., Hakan, O., 2011. Aegilops. In:Kole C. (Ed.) Wild Crop Relatives:Genomic and Breeding Resources, Cereals. Springer, Berlin Heidelberg, pp. 1-76
|
Kishii, M., 2019. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10:585
|
Komuro, S., Endo, R., Shikata, K., Kato, A., 2013. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56, 131-137
|
Li, H., Deal, K.R., Luo, M.C., Ji, W., Distelfeld, A., Dvorak, J., 2017. Introgression of the Aegilops speltoides Su1-Ph1 suppressor into wheat. Front. Plant Sci. 8, 2163
|
Li, H., Wang, L., Luo, M.C., Nie, F., Zhou, Y., McGuire, P.E., Distelfeld, A., Dai, X., Song, C.P., Dvorak, J., 2019. Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor. Theor. Appl. Genet. 132, 3265-3276
|
Lubbers, E.L., Gill, K.S., Cox, T.S., Gill, B.S., 1991. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34, 354-361
|
Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., Huo, N., Zhu, T., Wang, L., Wang, Y., McGuire, P.E., Liu, S., Long, H., Ramasamy, R.K., Rodriguez, J.C., Van Sonny, L., Yuan, L., Wang, Z., Xia, Z., Xiao, L., Anderson, O.D., Ouyang, S., Liang, Y., Zimin, A. V., Pertea, G., Qi, P., Bennetzen, J.L., Dai, X., Dawson, M.W., Muller, H.G., Kugler, K., Rivarola-Duarte, L., Spannagl, M., Mayer, K.F.X., Lu, F.H., Bevan, M.W., Leroy, P., Li, P., You, F.M., Sun, Q., Liu, Z., Lyons, E., Wicker, T., Salzberg, S.L., Devos, K.M., Dvoak, J., 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498-502
|
Luo, M.C., Gu, Y.Q., You, F.M., Deal, K.R., Ma, Y., Hu, Y., Huo, N., Wang, Y., Wang, J., Chen, S., Jorgensen, C.M., Zhang, Y., McGuire, P.E., Pasternak, S., Stein, J.C., Ware, D., Kramer, M., McCombie, W.R., Kianian, S.F., Martis, M.M., Mayer, K.F.X., Sehgal, S.K., Li, W., Gill, B.S., Bevan, M.W., Simkova, H., Dolezel, J., Weining, S., Lazo, G.R., Anderson, O.D., Dvorak, J., 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc. Natl. Acad. Sci. U.S.A. 110, 7940-7945
|
Mahjoob, M.M.M., Gorafi, Y.S.A., Kamal, N.M., Yamasaki, Y., Tahir, I.S.A., Matsuoka, Y., Tsujimoto, H., 2021. Genome-wide association study of morpho-physiological traits in Aegilops tauschii to broaden wheat genetic diversity. Plants 10, 211
|
Matsuoka, Y., Nasuda, S., Ashida, Y., Nitta, M., Tsujimoto, H., Takumi, S., Kawahara, T., 2013. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 8, e68310
|
Matsuoka, Y., Nishioka, E., Kawahara, T., Takumi, S., 2009. Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Systemat. Evol. 279, 233-244
|
Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York
|
Mcfadden, E.S., Sears, E.R., 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81-89
|
Mizuno, N., Yamasaki, M., Matsuoka, Y., Kawahara, T., Takumi, S., 2010. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.:implications for intraspecific lineage diversification and evolution of common wheat. Mol. Ecol. 19, 999-1013
|
Nakai, Y., 1979. Isozyme variations in Aegilops and Triticum. IV. The origin of the common wheats revealed from the study on esterase isozymes in synthesized hexaploid wheats. Jpn. J. Genet. 54, 175-189
|
Rey, M.D., Martin, A.C., Higgins, J., Swarbreck, D., Uauy, C., Shaw, P., Moore, G., 2017. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 37, 95
|
Sears, E.R., 1976. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31-51
|
Sears, E.R., 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19:548-593
|
Singh, N., Wu, S., Tiwari, V., Sehgal, S., Raupp, J., Wilson, D., Abbasov, M., Gill, B., Poland, J., 2019. Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Front. Plant Sci. 10, 9
|
Su, Q., Liu, L., Zhao, M., Zhang, C., Zhang, D., Li, Y., Li, S., 2020. The complete chloroplast genomes of seventeen Aegilops tauschii:genome comparative analysis and phylogenetic inference. PeerJ 8, e8678
|
Su, Y., Zhang, D., Xu, S., Gao, A., Li, S., 2010. Genetic diversity and differentiation in different Aegilops tauschii populations revealed by SSR. Acta Ecol. Sin. 30, 969-975
|
Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N., Chen, F., 2020. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 18, 1354-1360
|
Tanaka, M., 1983. Geographical distribution of Aegilops species based on collection at the plant germplasm institute, Kyoto university. In:Sakamoto S. (Ed.) Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 1009-1024
|
Tang, Z., Yang, Z., Fu, S., 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313-318
|
Van Slageren, M.W., 1994. Wild Wheats:a Monograph of Aegilops L. And Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen, Wageningen Agricultural University Papers, Wageningen, The Netherlands, pp. 94-97
|
Wang, C.J., Zhang, L.Q., Dai, S.F., Zheng, Y.L., Zhang, H.G., Liu, D.C., 2010. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum ×Aegilops tauschii hybrids. Euphytica 175, 323-329
|
Wang, J., Luo, M.C., Chen, Z., You, F.M., Wei, Y., Zheng, Y., Dvorak, J., 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198, 925-937
|
Ward, R.W., Yang, Z.L., Kim, H.S., Yen, C., 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 96, 312-318
|
Wei, H., Li, J., Peng, Z., Lu, B., Zhao, Z., Yang, W., 2008. Relationships of Aegilops tauschii revealed by DNA fingerprints:the evidence for agriculture exchange between China and the West. Prog. Nat. Sci. 18, 1525-1531
|
Yen, C., Yang, J.L., Cui, N.R., Zhong, J.P., Dong, Y.S., Sun, Y.Z., Zhong, G.Y., 1984. The Aegilops tauschii cosson from Yi-Li, Xinjang, China. Acta Agron. Sin. 10, 1-7
|
Yen, C., Yang, J.L., Liu, X.D., 1983. The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In:Sakamoto S. (Ed.) Proceedings of 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 55-58
|
Zhang, C., Huang, L., Zhang, H., Hao, Q., Lyu, B., Wang, M., Epstein, L., Liu, M., Kou, C., Qi, J., Chen, F., Li, M., Gao, G., Ni, F., Zhang, L., Hao, M., Wang, J., Chen, X., Luo, M.C., Zheng, Y., Wu, J., Liu, D., Fu, D., 2019. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat. Commun. 10, 4023
|
Zhang, D., He, J., Huang, L., Zhang, C., Zhou, Y., Su, Y., Li, S., 2017. An advanced backcross population through synthetic octaploid wheat as a "Bridge":development and QTL detection for seed dormancy. Front. Plant Sci. 8, 2123
|
Zhang, D., Zhou, Y., Zhao, X., Lv, L., Zhang, C., Li, J., Sun, G., Li, S., Song, C., 2018. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii ×hexaploid wheat) as donor. Front. Plant Sci. 9, 1113
|
Zhang, D., Su, Y., Li, Y., Wang, T., Li, S., 2012. Variation and correlation analysis of grain traits in the natural population of Aegilops tauschii. J. Triticeae Crop 32, 223-228
|
Zhao, L., Ning, S., Yi, Y., Zhang, L., Yuan, Z., Wang, J., Zheng, Y., Hao, M., Liu, D., 2018. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genom. 19, 3
|
Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Ying, Wang, Yuan ge, Liu, S., Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y., Lu, F., 2020. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412-1422
|
Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., Lv, L., Zhu, L., Fan, R., Ge, Y., Shaheen, A., Guo, G., Zhang, Z., Ma, J., Liang, H., Qiu, X., Hu, J., Sun, T., Hou, J., Xu, H., Xue, S., Jiang, W., Huang, J., Li, S., Zou, C., Song, C.-P., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Native Plants 7, 774-786
|