5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

The transcription factor Sox30 is involved in Nile tilapia spermatogenesis

doi: 10.1016/j.jgg.2021.11.003
Funds:

This study was supported by grants from the National Natural Science Foundation of China (31772831 and 31302170, 31861123001) and the National Key Research and Development Program of China (2018YFD0900202).

  • Received Date: 2021-07-22
  • Accepted Date: 2021-11-07
  • Rev Recd Date: 2021-11-04
  • Publish Date: 2021-11-18
  • Spermatogenesis is a complex process in which spermatogonial stem cells differentiate and develop into mature spermatozoa. The transcriptional regulatory network involved in fish spermatogenesis remains poorly understood. Here, we demonstrate in Nile tilapia that the Sox transcription factor family member Sox30 is specifically expressed in the testes and mainly localizes to spermatocytes and spermatids. CRISPR/Cas9-mediated sox30 mutation results in abnormal spermiogenesis, reduction of sperm motility, and male subfertility. Comparative transcriptome analysis shows that sox30 mutation alters the expression of genes involved in spermatogenesis. Further chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), ChIP-PCR, and luciferase reporter assays revealed that Sox30 positively regulates the transcription of ift140 and ptprb, two genes involved in spermiogenesis, by directly binding to their promoters. Our data, taken together, indicate that Sox30 plays an essential role in Nile tilapia spermatogenesis by directly regulating the transcription of the spermiogenesis-related genes ift140 and ptprb.
  • loading
  • Angelozzi, M., Lefebvre, V., 2019. SOXopathies:Growing family of developmental disorders due to SOX mutations. Trends Genet. 35, 658-671
    Bai, S., Fu, K., Yin, H., Cui, Y., Yue, Q., Li, W., Cheng, L., Tan, H., Liu, X., Guo, Y., Zhang, Y., Xie, J., He, W., Wang, Y., Feng, H., Xin, C., Zhang, J., Lin, M., Shen, B., Sun, Z., Guo, X., Zheng, K., Ye, L., 2018. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 145, dev164855
    Cavaco, J.E., Bogerd, J., Goos, H., Schulz, R.W., 2001. Testosterone inhibits 11-ketotestosterone-induced spermatogenesis in African catfish (Clarias gariepinus). Biol. Reprod. 65, 1807-1812
    Cavaco, J.E., Vilrokx, C., Trudeau, V.L., Schulz, R.W., Goos, H.J., 1998. Sex steroids and the initiation of puberty in male African catfish (Clarias gariepinus). Am. J. Physiol. 275, R1793-1802
    Chocu, S., Calvel, P., Rolland, A.D., Pineau, C., 2012. Spermatogenesis in mammals:proteomic insights. Syst. Biol. Reprod. Med. 58, 179-190
    Chu, L., Li, J., Liu, Y., Cheng, C.H., 2015. Gonadotropin signaling in zebrafish ovary and testis development:Insights from gene knockout study. Mol. Endocrinol. 29, 1743-1758
    Dai, X., Cheng, X., Huang, J., Gao, Y., Wang, D., Feng, Z., Zhai, G., Lou, Q., He, J., Wang, Z., Yin, Z., 2021. Rbm46, a novel germ cell specific factor, modulates meiotic progression and spermatogenesis. Biol. Reprod. 104, 1139-1153
    de Kretser, D.M., Loveland, K.L., Meinhardt, A., Simorangkir, D., Wreford, N., 1998. Spermatogenesis. Hum. Reprod. 13 Suppl 1, 1-8
    Feng, C.A., Spiller, C., Merriner, D.J., O'Bryan, M.K., Bowles, J., Koopman, P., 2017. SOX30 is required for male fertility in mice. Sci. Rep. 7, 17619
    Gonzalez-Fernandez, L., Ortega-Ferrusola, C., Macias-Garcia, B., Salido, G.M., Pena, F.J., Tapia, J.A., 2009. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation. Biol. Reprod. 80, 1239-1252
    Gopalakrishnan, B., Shaha, C., 1998. Inhibition of sperm glutathione S-transferase leads to functional impairment due to membrane damage. FEBS. Lett. 422, 296-300
    Han, F., Wang, Z., Wu, F., Liu, Z., Huang, B., Wang, D., 2010. Characterization, phylogeny, alternative splicing and expression of Sox30 gene. BMC Mol. Biol. 11, 98
    Hess, R.A., Renato de Franca, L., 2008. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp. Med. Biol. 636, 1-15
    Jiang, T., Hou, C.C., She, Z.Y., Yang, W.X., 2013. The SOX gene family:function and regulation in testis determination and male fertility maintenance. Mol. Biol. Rep. 40, 2187-2194
    Lehti, M.S., Sironen, A., 2016. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 151, R43-54
    Li, M., Liu, X., Dai, S., Xiao, H., Qi, S., Li, Y., Zheng, Q., Jie, M., Cheng, C.H.K., Wang, D., 2020. Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol. Life Sci. 77, 4921-4938
    Li, M., Yang, H., Zhao, J., Fang, L., Shi, H., Li, M., Sun, Y., Zhang, X., Jiang, D., Zhou, L., Wang, D., 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591-599
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method. Methods 25, 402-408
    Marques, L.S., Fossati, A.A., Leal, M.S., Rodrigues, R.B., Bombardelli, R.A., Streit, D.P., Jr., 2018. Viability assessment of primary growth oocytes following ovarian tissue vitrification of neotropical teleost pacu (Piaractus mesopotamicus). Cryobiology 82, 118-123
    Melo, M.C., van Dijk, P., Andersson, E., Nilsen, T.O., Fjelldal, P.G., Male, R., Nijenhuis, W., Bogerd, J., de Franca, L.R., Taranger, G.L., Schulz, R.W., 2015. Androgens directly stimulate spermatogonial differentiation in juvenile Atlantic salmon (Salmo salar). Gen. Comp. Endocrinol. 211, 52-61
    Mitchison, H.M., Schmidts, M., Loges, N.T., Freshour, J., Dritsoula, A., Hirst, R.A., O'Callaghan, C., Blau, H., Al Dabbagh, M., Olbrich, H., Beales, P.L., Yagi, T., Mussaffi, H., Chung, E.M., Omran, H., Mitchell, D.R., 2012. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381-389
    Miura, T., Yamauchi, K., Takahashi, H., Nagahama, Y., 1991. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. U S A 88, 5774-5778
    Nakamura, S., Watakabe, I., Nishimura, T., Toyoda, A., Taniguchi, Y., Tanaka, M., 2012. Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7, e29982
    Nantel, F., Monaco, L., Foulkes, N.S., Masquilier, D., LeMeur, M., Henriksen, K., Dierich, A., Parvinen, M., Sassone-Corsi, P., 1996. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159-162
    Nobrega, R.H., Batlouni, S.R., Franca, L.R., 2009. An overview of functional and stereological evaluation of spermatogenesis and germ cell transplantation in fish. Fish Physiol. Biochem. 35, 197-206
    Oakes, J.A., Barnard, L., Storbeck, K.H., Cunliffe, V.T., Krone, N.P., 2020. 11beta-Hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish. J. Endocrinol. 247, 197-212
    Osaki, E., Nishina, Y., Inazawa, J., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Ohsugi, M., Tezuka, T., Yoshida, M., Semba, K., 1999. Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Res. 27, 2503-2510
    Pudney, J., 1995. Spermatogenesis in nonmammalian vertebrates. Microsc. Res. Tech. 32, 459-497
    Qu, W., Yuan, S., Quan, C., Huang, Q., Zhou, Q., Yap, Y., Shi, L., Zhang, D., Guest, T., Li, W., Yee, S.P., Zhang, L., Cazin, C., Hess, R.A., Ray, P.F., Kherraf, Z.E., Zhang, Z., 2020. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am. J. Physiol. Cell Physiol. 318, C1092-C1106
    San Agustin, J.T., Pazour, G.J., Witman, G.B., 2015. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol. Biol. Cell 26, 4358-4372
    Schulz, R.W., de Franca, L.R., Lareyre, J.J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R.H., Miura, T., 2010. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390-411
    Steger, K., Klonisch, T., Gavenis, K., Behr, R., Schaller, V., Drabent, B., Doenecke, D., Nieschlag, E., Bergmann, M., Weinbauer, G.F., 1999. Round spermatids show normal testis-specific H1t but reduced cAMP-responsive element modulator and transition protein 1 expression in men with round-spermatid maturation arrest. J. Androl. 20, 747-754
    Tang, Y., Li, X., Xiao, H., Li, M., Li, Y., Wang, D., Wei, L., 2019. Transcription of the Sox30 gene is positively regulated by Dmrt1 in Nile tilapia. Int. J. Mol. Sci. 20, 5487
    Wang, S., Wang, X., Ma, L., Lin, X., Zhang, D., Li, Z., Wu, Y., Zheng, C., Feng, X., Liao, S., Feng, Y., Chen, J., Hu, X., Wang, M., Han, C., 2016. Retinoic acid is sufficient for the in vitro induction of mouse spermatocytes. Stem Cell Reports 7, 80-94
    Wei, L., Li, X., Li, M., Tang, Y., Wei, J., Wang, D., 2019. Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus). Gene 687, 109-115
    Wei, L., Yang, C., Tao, W., Wang, D., 2016. Genome-wide identification and transcriptome-based expression profiling of the Sox gene family in the Nile tilapia (Oreochromis niloticus). Int. J. Mol. Sci. 17, 270
    Xie, H., Kang, Y., Wang, S., Zheng, P., Chen, Z., Roy, S., Zhao, C., 2020. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet. 16, e1008655
    Zhang, D., Xie, D., Lin, X., Ma, L., Chen, J., Zhang, D., Wang, Y., Duo, S., Feng, Y., Zheng, C., Jiang, B., Ning, Y., Han, C., 2018a. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 145, dev164723
    Zhang, Q., Ye, D., Wang, H., Wang, Y., Hu, W., Sun, Y., 2020. Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction. Endocrinology 161, bqaa048
    Zhang, T., Song, W., Li, Z., Qian, W., Wei, L., Yang, Y., Wang, W., Zhou, X., Meng, M., Peng, J., Xia, Q., Perrimon, N., Cheng, D., 2018b. Kruppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc. Natl. Acad. Sci. U S A 115, 3960-3965
    Zhang, X., Wang, H., Li, M., Cheng, Y., Jiang, D., Sun, L., Tao, W., Zhou, L., Wang, Z., Wang, D., 2014. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol. Reprod. 91, 136
    Zhang, Y., Liu, H., Li, W., Zhang, Z., Shang, X., Zhang, D., Li, Y., Zhang, S., Liu, J., Hess, R.A., Pazour, G.J., Zhang, Z., 2017. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice. Dev. Biol. 432, 125-139
    Zhang, Y., Liu, H., Li, W., Zhang, Z., Zhang, S., Teves, M.E., Stevens, C., Foster, J.A., Campbell, G.E., Windle, J.J., Hess, R.A., Pazour, G.J., Zhang, Z., 2018c. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton (Hoboken) 75, 70-84
    Zhang, Z., Li, W., Zhang, Y., Zhang, L., Teves, M.E., Liu, H., Strauss, J.F., 3rd, Pazour, G.J., Foster, J.A., Hess, R.A., Zhang, Z., 2016. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol. Biol. Cell 27, 3705-3716
    Zhang, Z., Zhu, B., Ge, W., 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol. Endocrinol. 29, 76-98
    Zheng, Q., Xiao, H., Shi, H., Wang, T., Sun, L., Tao, W., Kocher, T.D., Li, M., Wang, D., 2020. Loss of Cyp11c1 causes delayed spermatogenesis due to the absence of 11-ketotestosterone. J. Endocrinol. 244, 487-499
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (235) PDF downloads (99) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return