5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 2
Mar.  2022
Turn off MathJax
Article Contents

The Melastoma dodecandrum genome and the evolution of Myrtales

doi: 10.1016/j.jgg.2021.10.004
Funds:

The authors acknowledge supports from The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province (115-PTJH16005), The Plateau Discipline Construction Program of Fujian Province (115-712018010), Special Fund for Forest Scientific Research in the Public Welfare (201204604).

  • Received Date: 2021-07-15
  • Accepted Date: 2021-10-07
  • Rev Recd Date: 2021-10-04
  • Publish Date: 2021-10-28
  • Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.
  • loading
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman D. J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410
    Ashburner, M., Ball, C. A., Blake, J. A., Bostein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight., S. S., Eppig, J. T., et al., 2000. Gene Ontology:tool for the unification of biology. Nat. Genet. 25, 25-29
    Badouin, H., Gouzy, J., Grassa, C.J., Murat, F., Staton, S.E., Cottret, L., Lelandais-Briere, C. Owens, G. L., Carrere, S., Mayjonade, B., et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature. 546, 148-152
    Benson, G., 1999. Tandem Repeats Finder:a program to analyze DNA sequences. Nucleic Acids Res. 27, 573-580
    Blanc, G., Wolfe, K. H., 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 16, 1667-1678
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., et al., 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370
    Boerjan, W., Ralph, J., Baucher, M., 2003. Lignin Biosynthesis. Annu. Rev. Plant Biol. 54, 519-546
    Byng, J. W., Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Judd, W. S., Mabberley, D. J., Sennikov, A. N., Sennikov, A. N., Soltis, D. E., Soltis, P. S., et al., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20
    Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Bio. Evol. 17, 540-552
    Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J. P., Boudet, A. M., 2001. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 28, 271-282
    Chae, K., Isaacs, C. G., Reeves, P. H., Muday, G. K., Nagpal, P., Reed, W. J., 2012. Arabidopsis Small Auxin Up RNA63 promotes hypocotyl and stamen filament elongation. Plant J. 71, 684-697
    Chen, C., Renner, S. S., 2007. in Flora of China (eds Wu, Z. Y., Raven, P. H. & Hong, D. Y.) Vol. 13, 360-399 (Science Press, Beijing; Missouri Botanical Garden Press, St. Louis)
    Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, C., et al., 2017. SOAPnuke:a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience. 7, 120
    Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, J. T., Clum, A., Dunn, C., O'Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al., 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 13, 1050-1054
    Clausing, G., Renner, S. S., 2001. Molecular Phylogenetics of Melastomataceae and Memecylaceae:implications for character evolution. Am. J. Bot. 88, 486-498
    Coen, E. S., Meyerowitz, E. M., 1991. The war of the whorls:genetic interactions controlling flower development. Nature. 353, 31-37
    Dardick, C., Callahan, A., Horn, R., Ruiz, K. B., Zhebentyayeva, T., Hollender, C., Whitaker, M., Abbott, A., Scorza, R., 2013. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J. 75, 618-630
    Darwin, F., 1899. The botanical work of Darwin. Ann. Bot. 13, 9-19
    De la Cruz, A. A., Hilbert, G., Riviere, C., Mengin, V., Ollat, N., Bordenave, L. Decroocq, S., Delaunay, J., Delrot, S., Merillon, J., et al., 2012. Anthocyanin identification and composition of wild Vitis spp. accessions by using LC-MS and LC-NMR. Anal. Chim. Acta. 732, 145-152
    Dreni, L., Kater, M. M., 2014. MADS reloaded:evolution of the AGAMOUS subfamily gene. New Phytol. 201, 717-732
    Dudchenko, O. Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., et al., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 356, 92-95
    Eddy, S. R., 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195
    Edgar, R. C., 2004. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797
    Feng, C., Feng, C., Lin, X., Liu, S., Li, Y., Kang, M., 2020. A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava). Plant Biotechnology J. 19, 717-730
    Godbole, R., Takahashi, H., Hertel, R., 1999. The Lazy Mutation in Rice Affects a Step between Statoliths and Gravity-Induced Lateral Auxin Transport. Plant Biology. 1, 378-381
    Guo, D. Me., Ran, J. H., Wang, X. Q., 2010. Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) Gene Family:The Emergence of Real Lignin is Associated with the Origin of Bona Fide CAD. J. Mol. Evol. 71, 202-218
    Holt, C., Yandell, M., 2011. MAKER2:an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 12, 491-491
    Huelsenbeck, J. P., Ronquist, F., 2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics. 17, 754-755
    Jain, M., Tyagi, A. K., Khurana, J. P., 2006. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics. 88, 360-371
    Jiao, Y., Leebens-Mack, J. Ayyampalayam, S., Bowers, J. E., McKain, M. R., McNeal, J., Rolf, M., Ruzicka, D. R., Wafula, E., Wickett, N. J., et al., 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 13, 135-141
    Johnson, A. D., Handsaker, R. E., Pulit, S. L., Nizzari, M. M. O'Donnell, C. J., de Bakker, P. I. W., 2008. SNAP:a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 24, 2938-2939
    Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al., 2014. InterProScan 5:genome-scale protein function classification. Bioinformatics. 30, 1236-1240
    Joseleau, J. P., Ruel, K., 1997. Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol. 114, 1123-1133
    Jurka, J. Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J., 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic Genome Res. 110, 462-467
    Kanehisa, M., Goto, S., 2000. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30
    Koonin, E. V. Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Krylov, D. M., Makarova, K. S., Mazumder, R., Mekhedov, S. L., Nikolaskaya, A. N., Rao, B. S., et al., 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7
    Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X:Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Bio. Evol. 35, 1547-1549
    Li, L., Stoeckert, C. J., Roos, D. S., 2003. OrthoMCL:identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178-2189
    Lowe, T. M., Eddy, S. R., 1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964
    Luo, Z., Hu, J., Zhao, Z., Zhang, D., 2016. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L. Sci. Rep. 6, 1-11
    Luo, Z. L., Zhang, D. X., Renner, S. S., 2008. Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin's division-of-labour hypothesis. Funct. Ecol. 22, 794-800
    Ma, J., Deng, S., Chen, L., Jia, Z., Sang, Z., Zhu, Z., Ma, L., Chen, F., 2019. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiol. 29, 816-879
    Morita, M. T., Tasaka, M., 2004. Gravity sensing and signaling. Curr. Opin. Plant Biol. 7, 712-718
    Mueller, F., 1883. Two kinds of stamens with different functions in the same flower. Nature. 27, 364-365
    Myburg, A. A., Grattapaglia, D., Tuskan, G. A., Hellsten, U., Hayes, R. D., Grimwood, J., Jenkins, J., Lindquist, E., Tice, H., Bauer, D., et al., 2014. The genome of Eucalyptus grandis. Nature. 510, 356-362
    Nawrocki, E. P., Kolbe, D. L., Eddy, S. R., 2009. Infernal1.0:inference of RNA alignments. Bioinformatics. 25, 1335-1337
    Paola-Naranjo R, D. D., Sanchez-Sanchez, J., Gonzalez-Paramas, A. M., Rivas-Gonzalo, J. C., 2004. Liquid chromatographic-mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum. J. Chromatography A. 1054, 205-210
    Parenicova, L., Folter, S. D., Kieffer, F., Horner, D. S., Colombo, L., 2003. Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis:New Openings to the MADS World. Plant Cell. 15, 1538-1551
    Price, A. L., Jones, N. C., Pevzner, P. A., 2005. De novo identification of repeat families in large genomes. Bioinformatics. 21, 351-358
    Qin, G. H., Ming, R., Tang, H., Guyot, H., Kramer, E. M., Hu, Y., Yi, X., Qi, Y., Xu, X., et al., 2017. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 91, 1108-1128
    Renner, S. S., 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nord. J. Bot. 13, 519-540
    Rogers, A., Mumby, P. J., 2019. Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS Biol. 17, e3000510
    Sam, G. J., Moxon, S., Marshall. M., Khanna, A., Eddy, S. R., Bateman, A., 2005. Rfam:annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, 121-124
    Shen, G., Yang, C. H., Shen, C. Y., Huang, K. S., 2019. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol. Res. 52, 25
    Sheng, X. G., Zhao, Z. Q., Wang, J. S., Yu, H. F., Shen, Y. S., Zeng, X. Y., Gu, H. H., 2019. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biol. 19, 106
    Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., Zdobnov, E. M., 2015. Busco:assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31, 3210-3212
    Slater, G. S. C., Birney, E., 2005. Automated generation of heuristics for biological sequence comparison. Bioinformatics. 6, 31
    Smaczniak, C., Immink, R. G. H., Angenent, G. C., Kaufmann, K., 2012. Developmental and evolutionary diversity of plant MADSdomain factors:insights from recent studies. Development. 139, 3081-3098
    Soltis, D.E., Smith, S.A., Cellinese, N., Cellinese, N., Wurdack, K. J., Tank, D. C., Brockington, S.F., Refulio-Rodriguez, N. F., Walker, J. B., Moore, M. J., et al., 2011. Angiosperm phylogeny:17 genes, 640 taxa. Am. J. Bot. 98, 704-730
    Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post- analysis of large phylogenies. Bioinformatics. 30, 1312-1313
    Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., 2006. AUGUSTUS:ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435-W439
    Stortenbeker, N., Bemer, M., 2019. The SAUR gene family:the plant's toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17-27
    Tanaka, Y., Brugliera, F., Chandler, S., 2009. Recent Progress of Flower Colour Modification by Biotechnology. Int. J. Mol. Sci. 10, 5350-5369
    Tanaka, Y., Sasaki, N., Ohmiya, A., 2008. Plant pigments for coloration:Anthocyanins, betalains and carotenoids. Plant J. 54, 733-749
    Theiβen, G., Melzer, R., Rumpler, F., 2016. MADS-domain transcription factors and the floral quartet model of flower development:linking plant development and evolution. Development. 143, 3259-3271
    Thrimawithana, A. H., Jones, D., Hilario, E., Grierson, E., Ngo, H. M., Liachko, L., Sullivan, S., Bilton, T. P., Jacobs, J. M. E., Bicknell, R., et al., 2019. A whole genome assembly of Leptospermum scoparium (Myrtaceae) for manuka research. New Zeal. J. Crop Hort. Science. 47, 233-260
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. V., Pimentel, H., Salzberg, S., Rinn, J. L., Pachter, L., 2012. Differential gene and transcript expression analysis of RNA- Seq. experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578
    Vining, K. J., Romanel, E., Jones, R. C., Klocko, A., Alves-Ferreira, M., Hefer, C. A., Amarasinghe, V., Dharmawardhana, P., Naithani, S., Ranik, M., et al., 2014. The floral transcriptome of Eucalyptus grandis. New Phytologist. 206, 1406-1422
    Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J. and Schatz, M. C., 2017. GenomeScope:fast reference-free genome profiling from short reads. Bioinformatics. 33, 2202-2204
    Wang, L., Yin, X., Cheng, C., Wang, H., Guo, R., Xu, X., Zhao, J., 2015. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol. Genet. Genomics. 290, 825-846
    Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., et al., 2014. Pilon:an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 9, e112963
    Wei, Q., Chen, R., Wei, X., Liu, Y., Zhao, S., Yin, X., Xie, T., 2020. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics. 21, 792
    Yan, W.H., Chen, D. J., Kaufmann, K., 2016. Molecular mechanisms of floral organ specification by MADS domain proteins. Curr. Opin. Plant Biol. 29, 154-162
    Yang, Z., 2007. PAML 4:phylogenetic analysis by maximum likelihood. Mol. Bio. Evol. 24, 1586-1591
    Yoshihara, T., Spalding, E. P., Iino, M., 2013. AtLAZY1 is a signalling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J. 74, 267-279
    Yuan, Z., Fang, Y., Zhang, T., Fei, Z., Han, F., Liu, C., Liu, M., Xiao, W., Zhang, W., Wu, S., et al., 2018. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 16, 1363-1374
    Zhang, X. H., Dai, S. P., Jiang, J. Y., Ma, G. H., 2010. The Chromosome Number and Karyotypes of Six Species of Melastomataceae. J. Trop. Subtrop. Bot. 18, 386-390
    Zhao, D. Q., Tao, J., 2015. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 6, 261
    Zhao, X., Hao, W., 2007. LTR_FINDER:an efficient tool for the prediction of full- length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268
    Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S. Y. W., Liu, X., et al. 2020. The water lily genome and the early evolution of flowering plants. Nature. 577, 79-84
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (421) PDF downloads (53) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return