5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 2
Mar.  2022
Turn off MathJax
Article Contents

The quantitative proteome atlas of a model cyanobacterium

doi: 10.1016/j.jgg.2021.09.007
Funds:

We thank Prof. Birgitta Norling (University of Stockholm, Sweden) for sharing the antibodies of NrtA and Toc75. The work was supported by a grant from National Natural Science Foundation of China (31670234 to YW), the Strategic Priority Research Program (XDB No. 17030300), and the Ministry of Science and Technology of the People’s Republic of China (No. 2015CB150100).

  • Received Date: 2021-09-17
  • Accepted Date: 2021-09-25
  • Rev Recd Date: 2021-09-23
  • Publish Date: 2021-11-11
  • Cyanobacteria are a group of oxygenic photosynthetic bacteria with great potentials in biotechnological applications and advantages as models for photosynthesis research. The subcellular localizations of the majority of proteins in any cyanobacteria remain undetermined, representing a major challenge in using cyanobacteria for both basic and industrial researches. Here, using label-free quantitative proteomics, we map 2027 proteins of Synechocystis sp. PCC6803, a model cyanobacterium, to different subcellular compartments and generate a proteome atlas with such information. The atlas leads to numerous unexpected but important findings, including the predominant localization of the histidine kinases Hik33 and Hik27 on the thylakoid but not the plasma membrane. Such information completely changes the concept regarding how the two kinases are activated. Together, the atlas provides subcellular localization information for nearly 60% proteome of a model cyanobacterium, and will serve as an important resource for the cyanobacterial research community.
  • loading
  • Aldridge, C., Spence, E., Kirkilionis, M.A., Frigerio, L., Robinson, C., 2008. Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 70, 140-150
    Badger, M.R., Price, G.D., 1989. Carbonic Anhydrase Activity Associated with the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 89, 51-60
    Baers, L.L., Breckels, L.M., Mills, L.A., Gatto, L., Deery, M.J., Stevens, T.J., Howe, C.J., Lilley, K.S., Lea-Smith, D.J., 2019. Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. Plant Physiol. 181, 1721-1738
    Bhaya, D., Bianco, N.R., Bryant, D., Grossman, A., 2000. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol. Microbiol. 37, 941-951
    Boehm, M., Yu, J., Krynicka, V., Barker, M., Tichy, M., Komenda, J., Nixon, P.J., Nield, J., 2012. Subunit organization of a synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell 24, 3669-3683
    Boudreau, E., Takahashi, Y., Lemieux, C., Turmel, M., Rochaix, J.D., 1997. The chloroplast Ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J. 16, 6095-6104
    Chang, Y.W., Rettberg, L.A., Treuner-Lange, A., Iwasa, J., Sogaard-Andersen, L., Jensen, G.J., 2016. Architecture of the type IVa pilus machine. Science 351, aad2001
    Cooley, J.W., Vermaas, W.F., 2001. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803:capacity comparisons and physiological function. J. Bacteriol. 183, 4251-4258
    Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Mann, M., 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526
    Cox, J., Mann, M., 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372
    Cox, J., Mann, M., 2012. 1D and 2D annotation enrichment:a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13 Suppl 16, S12
    De Marais, D.J., 2000. Evolution. When did photosynthesis emerge on Earth? Science 289, 1703-1705
    Fulda, S., Huang, F., Nilsson, F., Hagemann, M., Norling, B., 2000. Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur. J. Biochem. 267, 5900-5907
    Fulda, S., Mikkat, S., Schroder, W., Hagemann, M., 1999. Isolation of salt-induced periplasmic proteins from Synechocystis sp. strain PCC 6803. Arch. Microbiol. 171, 214-217
    Gandini, C., Schmidt, S.B., Husted, S., Schneider, A., Leister, D., 2017. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytol. 215, 256-268
    Gao, L., Ge, H., Huang, X., Liu, K., Zhang, Y., Xu, W., Wang, Y., 2015a. Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs). Mol. Cell. Proteomics 14, 340-353
    Gao, L., Shen, C., Liao, L., Huang, X., Liu, K., Wang, W., Guo, L., Jin, W., Huang, F., Xu, W., et al., 2014. Functional proteomic discovery of Slr0110 as a central regulator of carbohydrate metabolism in Synechocystis species PCC6803. Mol. Cell. Proteomics 13, 204-219
    Gao, L., Wang, J., Ge, H., Fang, L., Zhang, Y., Huang, X., Wang, Y., 2015b. Toward the complete proteome of Synechocystis sp. PCC 6803. Photosynth Res. 126, 203-219
    Ge, H., Fang, L., Huang, X., Wang, J., Chen, W., Liu, Y., Zhang, Y., Wang, X., Xu, W., He, Q., et al., 2017. Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium. Mol. Cell. Proteomics 16, 1258-1274
    Howitt, C.A., Udall, P.K., Vermaas, W.F., 1999. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration. J. Bacteriol. 181, 3994-4003
    Huang, F., Hedman, E., Funk, C., Kieselbach, T., Schroder, W.P., Norling, B., 2004. Isolation of outer membrane of Synechocystis sp. PCC 6803 and its proteomic characterization. Mol. Cell. Proteomics 3, 586-595
    Huang, F., Parmryd, I., Nilsson, F., Persson, A.L., Pakrasi, H.B., Andersson, B., Norling, B., 2002. Proteomics of Synechocystis sp. Strain PCC 6803:Identification of Plasma Membrane Proteins. Mol. Cell. Proteomics 1, 956-966
    Huertas, M.J., Lopez-Maury, L., Giner-Lamia, J., Sanchez-Riego, A.M., Florencio, F.J., 2014. Metals in cyanobacteria:analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 4, 865-886
    Jakovljevic, V., Leonardy, S., Hoppert, M., Sogaard-Andersen, L., 2008. PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J. Bacteriol. 190, 2411-2421
    Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Woodward, E.M., Chisholm, S.W., 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737-1740
    Juncker, A.S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., Krogh, A., 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652-1662
    Kanamaru, K., Kashiwagi, S., Mizuno, T., 1994. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol. Microbiol. 13, 369-377
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., et al., 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109-136
    Kasting, J.F., Siefert, J.L., 2002. Life and the evolution of Earth's atmosphere. Science 296, 1066-1068
    Keren, N., Aurora, R., Pakrasi, H.B., 2004. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 135, 1666-1673
    Keren, N., Kidd, M.J., Penner-Hahn, J.E., Pakrasi, H.B., 2002. A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803. Biochemistry 41, 15085-15092
    Khare, G., Nangpal, P., Tyagi, A.K., 2017. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis. PLoS One 12, e0169545
    Krynicka, V., Tichy, M., Krafl, J., Yu, J., Kana, R., Boehm, M., Nixon, P.J., Komenda, J., 2014. Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 94, 609-624
    Li, T., Yang, H.M., Cui, S.X., Suzuki, I., Zhang, L.F., Li, L., Bo, T.T., Wang, J., Murata, N., Huang, F., 2012. Proteomic study of the impact of Hik33 mutation in Synechocystis sp. PCC 6803 under normal and salt stress conditions. J. Proteome Res. 11, 502-514
    Liberton, M., Saha, R., Jacobs, J.M., Nguyen, A.Y., Gritsenko, M.A., Smith, R.D., Koppenaal, D.W., Pakrasi, H.B., 2016. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium. Mol. Cell. Proteomics 15, 2021-2032
    Luo, L., He, Y., Xu, Q., Lyu, W., Yan, J., Xin, P., Zhang, D., Chu, J., Li, J., Yu, H., 2020. Rapid and specific isolation of intact mitochondria from Arabidopsis leaves. J. Genet. Genomics 47, 65-68
    MacGregor-Chatwin, C., Sener, M., Barnett, S.F.H., Hitchcock, A., Barnhart-Dailey, M.C., Maghlaoui, K., Barber, J., Timlin, J.A., Schulten, K., Hunter, C.N., 2017. Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids. Plant Cell 29, 1119-1136
    Norling, B., Zak, E., Andersson, B., Pakrasi, H., 1998. 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 436, 189-192
    Ogawa, T., Bao, D.H., Katoh, H., Shibata, M., Pakrasi, H.B., Bhattacharyya-Pakrasi, M., 2002. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J. Biol. Chem. 277, 28981-28986
    Ohkawa, H., Pakrasi, H.B., Ogawa, T., 2000. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J. Biol. Chem. 275, 31630-31634
    Ohkawa, H., Sonoda, M., Shibata, M., Ogawa, T., 2001. Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183, 4938-4939
    Paithoonrangsarid, K., Shoumskaya, M.A., Kanesaki, Y., Satoh, S., Tabata, S., Los, D.A., Zinchenko, V.V., Hayashi, H., Tanticharoen, M., Suzuki, I., et al., 2004. Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J. Biol. Chem. 279, 53078-53086
    Price, G.D., Coleman, J.R., Badger, M.R., 1992. Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 100, 784-793
    Rengstl, B., Oster, U., Stengel, A., Nickelsen, J., 2011. An intermediate membrane subfraction in cyanobacteria is involved in an assembly network for Photosystem II biogenesis. J. Biol. Chem. 286, 21944-21951
    Rivera, M., 2017. Bacterioferritin:Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Acc. Chem. Res. 50, 331-340
    Schacherl, M., Baumann, U., 2016. Feeding Anthrax:The Crystal Structure of Bacillus anthracis InhA Protease. Structure 24, 1-2
    Schneider, D., Berry, S., Volkmer, T., Seidler, A., Rogner, M., 2004. PetC1 is the major Rieske iron-sulfur protein in the cytochrome b6f complex of Synechocystis sp. PCC 6803. J. Biol. Chem. 279, 39383-39388
    Schultze, M., Forberich, B., Rexroth, S., Dyczmons, N.G., Roegner, M., Appel, J., 2009. Localization of cytochrome b6f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta. 1787, 1479-1485
    Shimura, Y., Shiraiwa, Y., Suzuki, I., 2012. Characterization of the subdomains in the N-terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 53, 1255-1266
    Silva, P., Thompson, E., Bailey, S., Kruse, O., Mullineaux, C.W., Robinson, C., Mann, N.H., Nixon, P.J., 2003. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15, 2152-2164
    Singh, A.K., Elvitigala, T., Bhattacharyya-Pakrasi, M., Aurora, R., Ghosh, B., Pakrasi, H.B., 2008. Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol. 148, 467-478
    Skaar, E.P., Tobiason, D.M., Quick, J., Judd, R.C., Weissbach, H., Etienne, F., Brot, N., Seifert, H.S., 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. USA 99, 10108-10113
    Sozer, O., Komenda, J., Ughy, B., Domonkos, I., Laczko-Dobos, H., Malec, P., Gombos, Z., Kis, M., 2010. Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803. Plant Cell Physiol. 51, 823-835
    Stengel, A., Gugel, I.L., Hilger, D., Rengstl, B., Jung, H., Nickelsen, J., 2012. Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24, 660-675
    Tolle, J., Michel, K.P., Kruip, J., Kahmann, U., Preisfeld, A., Pistorius, E.K., 2002. Localization and function of the IdiA homologue Slr1295 in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 148, 3293-3305
    Tottey, S., Waldron, K.J., Firbank, S.J., Reale, B., Bessant, C., Sato, K., Cheek, T.R., Gray, J., Banfield, M.J., Dennison, C., et al., 2008. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138-1142
    Trautner, C., Vermaas, W.F., 2013. The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J. Bacteriol. 195, 5370-5380
    Tsunekawa, K., Shijuku, T., Hayashimoto, M., Kojima, Y., Onai, K., Morishita, M., Ishiura, M., Kuroda, T., Nakamura, T., Kobayashi, H., et al., 2009. Identification and characterization of the Na+/H+ antiporter Nhas3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J. Biol. Chem. 284, 16513-16521
    Tsunoyama, Y., Bernat, G., Dyczmons, N.G., Schneider, D., Rogner, M., 2009. Multiple Rieske proteins enable short- and long-term light adaptation of Synechocystis sp. PCC 6803. J. Biol. Chem. 284, 27875-27883
    Waditee, R., Hossain, G.S., Tanaka, Y., Nakamura, T., Shikata, M., Takano, J., Takabe, T., Takabe, T., 2004. Isolation and functional characterization of Ca2+/H+ antiporters from cyanobacteria. J. Biol. Chem. 279, 4330-4338
    Wang, J., Chen, L., Huang, S., Liu, J., Ren, X., Tian, X., Qiao, J., Zhang, W., 2012. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol. Biofuels 5, 89
    Wang, J., Yan, L.L., Yue, Z.L., Li, H.Y., Ji, X.J., Pu, C.X., Sun, Y., 2020. Receptor-like kinase OsCR4 controls leaf morphogenesis and embryogenesis by fixing the distribution of auxin in rice. J. Genet. Genomics 47, 577-589
    Wang, Y., Sun, J., Chitnis, P.R., 2000. Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Electrophoresis 21, 1746-1754
    Wisniewski, J.R., Zougman, A., Nagaraj, N., Mann, M., 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362
    Yamaguchi, K., Suzuki, I., Yamamoto, H., Lyukevich, A., Bodrova, I., Los, D.A., Piven, I., Zinchenko, V., Kanehisa, M., Murata, N., 2002. A two-component Mn2+-sensing system negatively regulates expression of the mntCAB operon in Synechocystis. Plant Cell 14, 2901-2913
    Yang, H., Liao, L., Bo, T., Zhao, L., Sun, X., Lu, X., Norling, B., Huang, F., 2014. Slr0151 in Synechocystis sp. PCC 6803 is required for efficient repair of photosystem II under high-light condition. J. Integr. Plant Biol. 56, 1136-1150
    Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., Ikeuchi, M., 2001. Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 42, 63-73
    Yu, C., Genco, C.A., 2012. Fur-mediated global regulatory circuits in pathogenic Neisseria species. J. Bacteriol. 194, 6372-6381
    Yue, X., Guo, Z., Shi, T., Song, L., Cheng, Y., 2019. Arabidopsis AGC protein kinases IREH1 and IRE3 control root skewing. J. Genet. Genomics 46, 259-267
    Zhang, L., Selao, T.T., Selstam, E., Norling, B., 2015. Subcellular Localization of Carotenoid Biosynthesis in Synechocystis sp. PCC 6803. PLoS One 10, e0130904
    Zhang, L.F., Yang, H.M., Cui, S.X., Hu, J., Wang, J., Kuang, T.Y., Norling, B., Huang, F., 2009. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J. Proteome Res. 8, 2892-2902
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (208) PDF downloads (27) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return