Aune, T.M., Collins, P.L.,Chang, S., 2009. Epigenetics and T helper 1 differentiation. Immunology 126, 299-305
|
Bulusu, V.,Aulehla, A., 2016. Metabolic Control of Cellular Differentiation. Dev. Cell 39, 286-287
|
Cai, L., Sutter, B.M., Li, B.,Tu, B.P., 2011. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437
|
Cao, Y., Guo, W.T., Tian, S., He, X., Wang, X.W., Liu, X., Gu, K.L., Ma, X., Huang, D., Hu, L., et al., 2015. miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J. 34, 609-623
|
Cao, S., Yu, S., Li, D., Ye, J., Yang, X., Li, C., Wang, X., Mai, Y., Qin, Y., Wu, J., et al., 2018. Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency. Cell Stem Cell 22, 529-542 e525
|
Carey, B.W., Finley, L.W., Cross, J.R., Allis, C.D.,Thompson, C.B., 2015. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413-416
|
Casey, M.J., Stumpf, P.S.,MacArthur, B.D., 2020. Theory of cell fate. Wiley interdiscip. Rev. Syst. Bio. Med. 12, e1471
|
Cha, Y., Han, M.J., Cha, H.J., Zoldan, J., Burkart, A., Jung, J.H., Jang, Y., Kim, C.H., Jeong, H.C., Kim, B.G., et al., 2017. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat. Cell Biol. 19, 445-456
|
Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., Liang, H., Chen, Y., Chen, J., Wu, Y., et al., 2013a. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat.Genet. 45, 34-42
|
Chen, Q., Chen, Y., Bian, C., Fujiki, R.,Yu, X., 2013b. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493, 561-564
|
Chen, K., Long, Q., Xing, G., Wang, T., Wu, Y., Li, L., Qi, J., Zhou, Y., Ma, B., Scholer, H.R., et al., 2019. Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. EMBO J. e99165
|
Chu, Y., Jiang, M., Wu, N., Xu, B., Li, W., Liu, H., Su, S., Shi, Y., Liu, H., Gao, X., et al., 2020. O-GlcNAcylation of SIX1 enhances its stability and promotes Hepatocellular Carcinoma Proliferation. Theranostics 10, 9830-9842
|
Cliff, T.S., Wu, T., Boward, B.R., Yin, A., Yin, H., Glushka, J.N., Prestegaard, J.H.,Dalton, S., 2017. MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux. Cell Stem Cell 21, 502-516.e509
|
Dang, C.V., Le, A.,Gao, P., 2009. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 15, 6479-6483
|
de Boer, V.C.,Houten, S.M., 2014. A mitochondrial expatriate: nuclear pyruvate dehydrogenase. Cell 158, 9-10
|
Fang, Y., Xu, X., Ding, J., Yang, L., Doan, M.T., Karmaus, P.W.F., Snyder, N.W., Zhao, Y., Li, J.L.,Li, X., 2021. Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell 28, 748-763 e747
|
Fernandez-Rebollo, E., Franzen, J., Goetzke, R., Hollmann, J., Ostrowska, A., Oliverio, M., Sieben, T., Rath, B., Kornfeld, J.W.,Wagner, W., 2020. Senescence-Associated Metabolomic Phenotype in Primary and iPSC-Derived Mesenchymal Stromal Cells. Stem Cell Reports 14, 201-209
|
Folmes, C.D., Nelson, T.J., Martinez-Fernandez, A., Arrell, D.K., Lindor, J.Z., Dzeja, P.P., Ikeda, Y., Perez-Terzic, C.,Terzic, A., 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264-271
|
Fu, X., Wu, X., Djekidel, M.N.,Zhang, Y., 2019. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells. Nat. Cell Biol. 21, 835-844
|
Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al., 2019. Cellular Senescence: Defining a Path Forward. Cell 179, 813-827
|
Gurdon, J.B., 1962. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol Exp. Morphol. 10, 622-640
|
Gurdon, J.B., 2013. The cloning of a frog. Development 140, 2446-2448
|
Hanover, J.A., 2010. Epigenetics gets sweeter: O-GlcNAc joins the "histone code". Chem. Biol. 17, 1272-1274
|
Hoefflin, R., Harlander, S., Schafer, S., Metzger, P., Kuo, F., Schonenberger, D., Adlesic, M., Peighambari, A., Seidel, P., Chen, C.Y., et al., 2020. HIF-1alpha and HIF-2alpha differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun.11, 4111
|
Hu, S., Balakrishnan, A., Bok, R.A., Anderton, B., Larson, P.E., Nelson, S.J., Kurhanewicz, J., Vigneron, D.B.,Goga, A., 2011. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 14, 131-142
|
Hu, Z., Tan, D.E.K., Chia, G., Tan, H., Leong, H.F., Chen, B.J., Lau, M.S., Tan, K.Y.S., Bi, X., Yang, D., et al., 2020. Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells. Nat. Cell Biol. 22, 175-186
|
Hwang, I.Y., Kwak, S., Lee, S., Kim, H., Lee, S.E., Kim, J.H., Kim, Y.A., Jeon, Y.K., Chung, D.H., Jin, X., et al., 2016. Psat1-Dependent Fluctuations in alpha-Ketoglutarate Affect the Timing of ESC Differentiation. Cell Metab. 24, 494-501
|
Intlekofer, A.M.,Finley, L.W.S., 2019. Metabolic signatures of cancer cells and stem cells. Nat. Metab. 1, 177-188
|
Jang, H., Kim, T.W., Yoon, S., Choi, S.Y., Kang, T.W., Kim, S.Y., Kwon, Y.W., Cho, E.J.,Youn, H.D., 2012. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 11, 62-74
|
Jones, P.A., Issa, J.P.,Baylin, S., 2016. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630-641
|
Khaw, S.L., Min-Wen, C., Koh, C.G., Lim, B.,Shyh-Chang, N., 2015. Oocyte Factors Suppress Mitochondrial Polynucleotide Phosphorylase to Remodel the Metabolome and Enhance Reprogramming. Cell Rep. 12, 1080-1088
|
Kim, H., Jang, H., Kim, T.W., Kang, B.H., Lee, S.E., Jeon, Y.K., Chung, D.H., Choi, J., Shin, J., Cho, E.J., et al., 2015. Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells 33, 2699-2711
|
Le, R., Huang, Y., Zhao, A.,Gao, S., 2020. Lessons from expanded potential of embryonic stem cells: Moving toward totipotency. J. Genet. Genomics 47, 123-130
|
Lee, J.V., Carrer, A., Shah, S., Snyder, N.W., Wei, S., Venneti, S., Worth, A.J., Yuan, Z.F., Lim, H.W., Liu, S., et al., 2014. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306-319
|
Letouze, E., Martinelli, C., Loriot, C., Burnichon, N., Abermil, N., Ottolenghi, C., Janin, M., Menara, M., Nguyen, A.T., Benit, P., et al., 2013. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739-752
|
Lewis, B.A.,Hanover, J.A., 2014. O-GlcNAc and the epigenetic regulation of gene expression. J. Biol. Chem. 289, 34440-34448
|
Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., et al., 2010. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51-63
|
Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., Qin, Y., Guo, L., He, J., Yu, S., et al., 2017. Chromatin Accessibility Dynamics during iPSC Reprogramming. Cell Stem Cell 21, 819-833 e816
|
Li, L., Liang, Y., Kang, L., Liu, Y., Gao, S., Chen, S., Li, Y., You, W., Dong, Q., Hong, T., et al., 2018. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell 33, 368-385 e367
|
Li, L., Chen, K., Wang, T., Wu, Y., Xing, G., Chen, M., Hao, Z., Zhang, C., Zhang, J., Ma, B., et al., 2020. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat. Metab. 2, 882-892
|
Liu, X., Sun, H., Qi, J., Wang, L., He, S., Liu, J., Feng, C., Chen, C., Li, W., Guo, Y., et al., 2013. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat. Cell Biol. 15, 829-838
|
Liu, L., Xu, Y., He, M., Zhang, M., Cui, F., Lu, L., Yao, M., Tian, W., Benda, C., Zhuang, Q., et al., 2014. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell 15, 574-588
|
Ma, X., Li, C., Sun, L., Huang, D., Li, T., He, X., Wu, G., Yang, Z., Zhong, X., Song, L., et al., 2014. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat. Commun. 5, 5212
|
Mathieu, J., Zhou, W., Xing, Y., Sperber, H., Ferreccio, A., Agoston, Z., Kuppusamy, K.T., Moon, R.T.,Ruohola-Baker, H., 2014. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14, 592-605
|
Mayor, R., 2019. Cell fate decisions during development. Science 364, 937-938
|
Mews, P., Donahue, G., Drake, A.M., Luczak, V., Abel, T.,Berger, S.L., 2017. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381-386
|
Miranda-Goncalves, V., Lameirinhas, A., Henrique, R.,Jeronimo, C., 2018. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front. Genet. 9, 427
|
Monk, D., Mackay, D.J.G., Eggermann, T., Maher, E.R.,Riccio, A., 2019. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235-248
|
Moris, N., Pina, C.,Arias, A.M., 2016. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 17, 693-703
|
Morris, J.P.t., Yashinskie, J.J., Koche, R., Chandwani, R., Tian, S., Chen, C.C., Baslan, T., Marinkovic, Z.S., Sanchez-Rivera, F.J., Leach, S.D., et al., 2019. alpha-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573, 595-599
|
Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., et al., 2015. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392-402
|
Nacarelli, T.,Sell, C., 2017. Targeting metabolism in cellular senescence, a role for intervention. Mol. Cell. Endocrinol. 455, 83-92
|
Nagaraj, R., Sharpley, M.S., Chi, F., Braas, D., Zhou, Y., Kim, R., Clark, A.T.,Banerjee, U., 2017. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell 168, 210-223 e211
|
Papait, R., Serio, S.,Condorelli, G., 2020. Role of the Epigenome in Heart Failure. Physiol. Rev. 100, 1753-1777
|
Pavlova, N.N.,Thompson, C.B., 2016. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 23, 27-47
|
Pei, D., Shu, X., Gassama-Diagne, A.,Thiery, J.P., 2019. Mesenchymal-epithelial transition in development and reprogramming. Nat. Cell Biol. 21, 44-53
|
Peng, M., Yin, N., Chhangawala, S., Xu, K., Leslie, C.S.,Li, M.O., 2016. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481-484
|
Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., et al., 2012. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617-1632
|
Rodriguez-Terrones, D., Hartleben, G., Gaume, X., Eid, A., Guthmann, M., Iturbide, A.,Torres-Padilla, M.E., 2020. A distinct metabolic state arises during the emergence of 2-cell-like cells. EMBO Rep. 21, e48354
|
Sakabe, K., Wang, Z.,Hart, G.W., 2010. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl. Acad. Sci. U. S. A. 107, 19915-19920
|
Sardina, J.L., Collombet, S., Tian, T.V., Gomez, A., Di Stefano, B., Berenguer, C., Brumbaugh, J., Stadhouders, R., Segura-Morales, C., Gut, M., et al., 2018. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell 23, 727-741 e729
|
Sebastian, C., Zwaans, B.M., Silberman, D.M., Gymrek, M., Goren, A., Zhong, L., Ram, O., Truelove, J., Guimaraes, A.R., Toiber, D., et al., 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185-1199
|
Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., Aburatani, H., Kume, K., Endo, F.,Kume, S., 2014. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780-794
|
Shyh-Chang, N., Locasale, J.W., Lyssiotis, C.A., Zheng, Y., Teo, R.Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J.J., Zhu, H., et al., 2013. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222-226
|
Sone, M., Morone, N., Nakamura, T., Tanaka, A., Okita, K., Woltjen, K., Nakagawa, M., Heuser, J.E., Yamada, Y., Yamanaka, S., et al., 2017. Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency. Cell Metab. 25, 1103-1117 e1106
|
Speakman, C.M., Domke, T.C., Wongpaiboonwattana, W., Sanders, K., Mudaliar, M., van Aalten, D.M., Barton, G.J.,Stavridis, M.P., 2014. Elevated O-GlcNAc levels activate epigenetically repressed genes and delay mouse ESC differentiation without affecting naive to primed cell transition. Stem Cells 32, 2605-2615
|
Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T.H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E.,Michelakis, E.D., 2014. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97
|
Takahashi, K.,Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
|
Takahashi, K.,Yamanaka, S., 2016. A decade of transcription factor-mediated reprogramming to pluripotency. Nature reviews Mol. Cell Biol. 17, 183-193
|
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872
|
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Sasaki, A., Yamamoto, M., Nakamura, M., Sutou, K., Osafune, K.,Yamanaka, S., 2014. Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nat. Commun. 5, 3678
|
Shin-ichiro Takebayashi, Hiroshi Tanaka, Shinjiro Hino, Yuko Nakatsu, Tomoka Igata, Akihisa Sakamoto,Nakao, M.N.a.M., 2015. Retinoblastoma protein promotes oxidative phosphorylation. Aging Cell 14, 689-697
|
Tatapudy, S., Aloisio, F., Barber, D.,Nystul, T., 2017. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep. 18, 2105-2118
|
TeSlaa, T., Chaikovsky, A.C., Lipchina, I., Escobar, S.L., Hochedlinger, K., Huang, J., Graeber, T.G., Braas, D.,Teitell, M.A., 2016. alpha-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. Cell Metab. 24, 485-493
|
Thakur, C.,Chen, F., 2019. Connections between metabolism and epigenetics in cancers. Semin. Cancer Biol. 57, 52-58
|
Vella, P., Scelfo, A., Jammula, S., Chiacchiera, F., Williams, K., Cuomo, A., Roberto, A., Christensen, J., Bonaldi, T., Helin, K., et al., 2013. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol. Cell 49, 645-656
|
Wan, W., Peng, K., Li, M., Qin, L., Tong, Z., Yan, J., Shen, B.,Yu, C., 2017. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene 36, 3868-3877
|
Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O.,McKnight, S.L., 2009. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435-439
|
Wang, L., Zhang, T., Wang, L., Cai, Y., Zhong, X., He, X., Hu, L., Tian, S., Wu, M., Hui, L., et al., 2017. Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J. 36, 1330-1347
|
Wiley, C.D.,Campisi, J., 2016. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metab. 23, 1013-1021
|
Wilson, C.B., Rowell, E.,Sekimata, M., 2009. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91-105
|
Wong, B.W., Wang, X., Zecchin, A., Thienpont, B., Cornelissen, I., Kalucka, J., Garcia-Caballero, M., Missiaen, R., Huang, H., Bruning, U., et al., 2017a. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature 542, 49-54
|
Wong, C.C., Qian, Y.,Yu, J., 2017b. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36, 3359-3374
|
Wu, D., Cai, Y.,Jin, J., 2017. Potential coordination role between O-GlcNAcylation and epigenetics. Protein Cell 8, 713-723
|
Wu, Y., Chen, K., Liu, X., Huang, L., Zhao, D., Li, L., Gao, M., Pei, D., Wang, C.,Liu, X., 2016. Srebp-1 Interacts with c-Myc to Enhance Somatic Cell Reprogramming. Stem Cells 34, 83-92
|
Wu, Y., Chen, K., Xing, G., Li, L., Ma, B., Hu, Z., Duan, L.,Liu, X., 2019. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci. Adv. 5, eaax7525
|
Xie, Y., Jin, P., Sun, X., Jiao, T., Zhang, Y., Li, Y.,Sun, M., 2018. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem. Funct. 36, 413-419
|
Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C., Wang, P., Xiao, M.T., et al., 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17-30
|
Xu, Y., Zhang, Y., Garcia-Canaveras, J.C., Guo, L., Kan, M., Yu, S., Blair, I.A., Rabinowitz, J.D.,Yang, X., 2020. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 369, 397-403
|
Yamanaka, S., 2012. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678-684
|
Yang, X.,Qian, K., 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452-465
|
Yang, X., Zhao, H., Yang, J., Ma, Y., Liu, Z., Li, C., Wang, T., Yan, Z.,Du, N., 2019. MiR-150-5p regulates melanoma proliferation, invasion and metastasis via SIX1-mediated Warburg Effect. Biochem. Biophys. Res. Commun. 515, 85-91
|
Ying, Z., Chen, K., Zheng, L., Wu, Y., Li, L., Wang, R., Long, Q., Yang, L., Guo, J., Yao, D., et al., 2016. Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming. Cell Metab. 23, 220-226
|
Zechner, C., Nerli, E., Norden, C., 2020. Stochasticity and determinism in cell fate decisions. Development 147, dev181495
|
Zhang, J., Nuebel, E., Daley, G.Q., Koehler, C.M.,Teitell, M.A., 2012. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589-595
|
Zhang, J., Ratanasirintrawoot, S., Chandrasekaran, S., Wu, Z., Ficarro, S.B., Yu, C., Ross, C.A., Cacchiarelli, D., Xia, Q., Seligson, M., et al., 2016. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell 19, 66-80
|
Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., et al., 2015. A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell 163, 1678-1691
|
Zhu, Q., Cheng, X., Cheng, Y., Chen, J., Xu, H., Gao, Y., Duan, X., Ji, J., Li, X.,Yi, W., 2020. O-GlcNAcylation regulates the methionine cycle to promote pluripotency of stem cells. Proc.Natl. Acad. Sci. U. S. A. 117, 7755-7763
|
Zhu, T., Zheng, J., Zhuo, W., Pan, P., Li, M., Zhang, W., Zhou, H., Gao, Y., Li, X.,Liu, Z., 2021. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discov. 7, 126
|
Zhuang, Q., Li, W., Benda, C., Huang, Z., Ahmed, T., Liu, P., Guo, X., Ibanez, D.P., Luo, Z., Zhang, M., et al., 2018. NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat. Cell Biol. 20, 400-412
|