Agouni, A., Tual-Chalot, S., Chalopin, M., Duluc, L., Mody, N., Martinez, M.C., Andriantsitohaina, R.,Delibegovic, M., 2014. Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction. Biochem Pharmacol 92, 607-617
|
Akhtar, M.J., Ahamed, M., Alhadlaq, H.A.,Alshamsan, A., 2017. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 1861, 802-813
|
P, B., 2007. The lean patient with type 2 diabetes: characteristics and therapy challenge. Int J Clin Pract Suppl, 3-9
|
Burkewitz, K., Zhang, Y.,Mair, W.B., 2014. AMPK at the nexus of energetics and aging. Cell Metab 20, 10-25
|
Calnan, D.R.,Brunet, A., 2008. The FoxO code. Oncogene 27, 2276-2288
|
Chatterjee, S., Khunti, K.,Davies, M.J., 2017. Type 2 diabetes. Lancet 389, 2239-2251
|
Defronzo, R.A., 2009. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773-795
|
Del Prato, S.,Pulizzi, N., 2006. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 55, S20-27
|
Dornhorst, A., 2001. Insulinotropic meglitinide analogues. Lancet 358, 1709-1716
|
Dowarah, J.,Singh, V.P., 2020. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 28, 115263
|
Fernandez, A.M., Kim, J.K., Yakar, S., Dupont, J., Hernandez-Sanchez, C., Castle, A.L., Filmore, J., Shulman, G.I.,Le Roith, D., 2001. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15, 1926-1934
|
Ferrannini, E.,DeFronzo, R.A., 2015. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 36, 2288-2296
|
Foretz, M., Guigas, B., Bertrand, L., Pollak, M.,Viollet, B., 2014. Metformin: from mechanisms of action to therapies. Cell Metab 20, 953-966
|
Gai, X., Tang, B., Liu, F., Wu, Y., Wang, F., Jing, Y., Huang, F., Jin, D., Wang, L.,Zhang, H., 2019. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3beta/MMPs. J Genet Genomics 46, 235-245
|
Ghani, U., 2015. Re-exploring promising alpha-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem 103, 133-162
|
Guo, S., 2014. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 220, T1-T23
|
Hardie, D.G., 2014. AMPK--sensing energy while talking to other signaling pathways. Cell Metab 20, 939-952
|
Houseman, L., Edwards, M., Phillips, I.R.,Shephard, E.A., 2015. Isolation and Culture of Mouse Hepatocytes: Gender-Specific Gene Expression Responses to Chemical Treatments. Methods Mol Biol 1250, 3-12
|
I, O.S., Zhang, W., Wasserman, D.H., Liew, C.W., Liu, J., Paik, J., DePinho, R.A., Stolz, D.B., Kahn, C.R., Schwartz, M.W., et al., 2015. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun 6, 7079
|
Kandimalla, R., Thirumala, V.,Reddy, P.H., 2017. Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 1863, 1078-1089
|
Kim, C.H., Pennisi, P., Zhao, H., Yakar, S., Kaufman, J.B., Iganaki, K., Shiloach, J., Scherer, P.E., Quon, M.J.,LeRoith, D., 2006. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am J Physiol Endocrinol Metab 291, E298-305
|
Kobzar, O.L., Trush, V.V., Tanchuk, V.Y., Zhilenkov, A.V., Troshin, P.A.,Vovk, A.I., 2014. Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Bioorg Med Chem Lett 24, 3175-3179
|
Lamos, E.L., Stein, S.A.,Davis, S.N., 2013. Sulfonylureas and meglitinides: historical and contemporary issues. Panminerva Med 55, 239-251
|
Li, X., Zhen, M., Deng, R., Yu, T., Li, J., Zhang, Y., Zou, T., Zhou, Y., Lu, Z., Guan, M., et al., 2018. RF-assisted gadofullerene nanoparticles induces rapid tumor vascular disruption by down-expression of tumor vascular endothelial cadherin. Biomaterials 163, 142-153
|
Li, X., Zhen, M., Zhou, C., Deng, R., Yu, T., Wu, Y., Shu, C., Wang, C.,Bai, C., 2019. Gadofullerene Nanoparticles Reverse Dysfunctions of Pancreas and Improve Hepatic Insulin Resistance for Type 2 Diabetes Mellitus Treatment. ACS Nano 13, 8597-8608
|
Liu, Q., Zhang, X., Zhang, X., Zhang, G., Zheng, J., Guan, M., Fang, X., Wang, C.,Shu, C., 2013. C70-carboxyfullerenes as efficient antioxidants to protect cells against oxidative-induced stress. ACS Appl Mater Interfaces 5, 11101-11107
|
Ma, H., Zhao, J., Meng, H., Hu, D., Zhou, Y., Zhang, X., Wang, C., Li, J., Yuan, J.,Wei, Y., 2020. Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. ACS Appl Mater Interfaces 12, 16104-16113
|
Meng, J., Liang, X., Chen, X.,Zhao, Y., 2013. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol (Camb) 5, 43-47
|
Nespoux, J.,Vallon, V., 2018. SGLT2 inhibition and kidney protection. Clin Sci (Lond) 132, 1329-1339
|
Petersen, M.C., Vatner, D.F.,Shulman, G.I., 2017. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13, 572-587
|
Petrovic, D., Seke, M., Borovic, M.L., Jovic, D., Borisev, I., Srdjenovic, B., Rakocevic, Z., Pavlovic, V.,Djordjevic, A., 2018. Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats. Exp Mol Pathol 104, 199-211
|
Pfeiffer, A.F.,Klein, H.H., 2014. The treatment of type 2 diabetes. Dtsch Arztebl Int 111, 69-81; quiz 82
|
Qian, M., Shan, Y., Guan, S., Zhang, H., Wang, S.,Han, W., 2016. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model 56, 2024-2034
|
Remedi, M.S.,Emfinger, C., 2016. Pancreatic beta-cell identity in diabetes. Diabetes Obes Metab 18 Suppl 1, 110-116
|
Rui, L., 2014. Energy metabolism in the liver. Compr Physiol 4, 177-197
|
Samuel, V.T.,Shulman, G.I., 2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871
|
Sanchez-Rangel, E.,Inzucchi, S.E., 2017. Metformin: clinical use in type 2 diabetes. Diabetologia 60, 1586-1593
|
Sharabi, K., Lin, H., Tavares, C.D.J., Dominy, J.E., Camporez, J.P., Perry, R.J., Schilling, R., Rines, A.K., Lee, J., Hickey, M., et al., 2017. Selective Chemical Inhibition of PGC-1alpha Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 169, 148-160 e115
|
Shimano, H.,Sato, R., 2017. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13, 710-730
|
Soccio, R.E., Chen, E.R.,Lazar, M.A., 2014. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20, 573-591
|
Stumvoll, M., Goldstein, B.J.,van Haeften, T.W., 2005. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333-1346
|
Sun, Z.,Liu, J.L., 2019. mTOR-S6K1 pathway mediates cytoophidium assembly. J Genet Genomics 46, 65-74
|
Titchenell, P.M., Lazar, M.A.,Birnbaum, M.J., 2017. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol Metab 28, 497-505
|
Wang, Z., Lu, Z., Zhao, Y.,Gao, X., 2015. Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7, 2914-2925
|
Wua, J., Wang, H.M., Li, J.,Men, X.L., 2013. [The research applications of db/db mouse]. Sheng Li Ke Xue Jin Zhan 44, 12-18
|
Xu, J., Wang, S., Feng, T., Chen, Y.,Yang, G., 2018. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med 22, 6026-6038
|
Yang, D., Zhao, Y., Guo, H., Li, Y., Tewary, P., Xing, G., Hou, W., Oppenheim, J.J.,Zhang, N., 2010. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4, 1178-1186
|
Yoon, M.S., 2017. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 9
|
Zhen, M., Shu, C., Li, J., Zhang, G., Wang, T., Luo, Y., Zou, T., Deng, R., Fang, F., Lei, H., et al., 2015. A highly efficient and tumor vascular-targeting therapeutic technique with size-expansible gadofullerene nanocrystals. Science China Materials 58, 799-810
|
Zhou, Y., Deng, R., Zhen, M., Li, J., Guan, M., Jia, W., Li, X., Zhang, Y., Yu, T., Zou, T., et al., 2017. Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials 133, 107-118
|
Zhou, Y., Zhen, M., Ma, H., Li, J., Shu, C.,Wang, C., 2018. Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy. Nanomedicine 14, 1361-1369
|