5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 2
Mar.  2022
Turn off MathJax
Article Contents

Aberrant nuclear lamina contributes to the malignancy of human gliomas

doi: 10.1016/j.jgg.2021.08.013
Funds:

This work was supported by grants from High-level students returning to China (team) project in Hangzhou (2017), Zhejiang Provincial Natural Science Foundation of China (LY19C090002, LQ18C090005), Hangzhou Agriculture and Social Development Project (20191203B20).

  • Received Date: 2021-03-30
  • Accepted Date: 2021-08-13
  • Rev Recd Date: 2021-08-05
  • Publish Date: 2021-09-13
  • Glioma is the most common type of tumor in the central nervous system, accounting for around 80% of all malignant brain tumors. Previous studies showed a significant association between nuclear morphology and the malignant progress of gliomas. By virtue of integrated proteomics and genomics analyses as well as experimental validations, we identify three nuclear lamin genes (LMNA, LMNB1, and LMNB2) that are significantly upregulated in glioma tissues compared with normal brain tissues. We show that elevated expressions of LMNB1, LMNB2, and LMNA in glioma cells are highly associated with the rapid progression of the disease and the knockdown of LMNB1, LMNB2, and LMNA dramatically suppresses glioma progression in both in vitro and in vivo mouse models. Moreover, the repression of glioma cell growth by lamin knockdown is mediated by the pRb-mediated G1-S inhibition. On the contrary, overexpression of lamins in normal human astrocytes dramatically induced nuclear morphological aberrations and accelerated cell growth. Together, our multi-omics-based analysis has revealed a previously unrecognized role of lamin genes in gliomagenesis, providing a strong support for the key link between aberrant tumor nuclear shape and the survival of glioma patients. Based on these findings, lamins are proposed to be potential oncogene targets for therapeutic treatments of brain tumors.
  • loading
  • Alaiya, A.A., Franzen, B., Fujioka, K., Moberger, B., Schedvins, K., Silfversvard, C., Linder, S.,Auer, G., 1997. Phenotypic analysis of ovarian carcinoma:polypeptide expression in benign, borderline and malignant tumors. Int. J. Cancer 73, 678-683
    Bell, E.S.,Lammerding, J., 2016. Causes and consequences of nuclear envelope alterations in tumour progression. Eur. J. Cell Biol. 95, 449-464
    Belt, E.J., Fijneman, R.J., van den Berg, E.G., Bril, H., Delis-van Diemen, P.M., Tijssen, M., van Essen, H.F., de Lange-de Klerk, E.S., Belien, J.A., Stockmann, H.B., et al., 2011. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur. J. Cancer 47, 1837-1845
    Boruah, D.,Deb, P., 2013. Utility of nuclear morphometry in predicting grades of diffusely infiltrating gliomas. ISRN Oncol. 2013, 760653
    Capo-chichi, C.D., Cai, K.Q., Smedberg, J., Ganjei-Azar, P., Godwin, A.K.,Xu, X.X., 2011. Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer. Chin. J. Cancer 30, 415-425
    Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al., 2012. The cBio cancer genomics portal:an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404
    Chen, Y., Mo, L., Wang, X., Chen, B., Hua, Y., Gong, L., Yang, F., Li, Y., Chen, F., Zhu, G., et al., 2020. TPGS-1000 exhibits potent anticancer activity for hepatocellular carcinoma in vitro and in vivo. Aging 12, 1624-1642
    Coffinier, C., Jung, H.J., Nobumori, C., Chang, S., Tu, Y., Barnes, R.H., 2nd, Yoshinaga, Y., de Jong, P.J., Vergnes, L., Reue, K., et al., 2011. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Bio. Cell 22, 4683-4693
    Cohen, A.L.,Colman, H., 2015. Glioma biology and molecular markers. Cancer Treat. Res. 163, 15-30
    Davidson, P.M.,Lammerding, J., 2014. Broken nuclei——lamins, nuclear mechanics, and disease. Trends Cell Biol. 24, 247-256
    Diaz, G., Zuccarelli, A., Pelligra, I.,Ghiani, A., 1989. Elliptic fourier analysis of cell and nuclear shapes. Comp. Biomed. Res. Int. J. 22, 405-414
    Dolecek, T.A., Propp, J.M., Stroup, N.E.,Kruchko, C., 2012. CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol. 14 Suppl. 5, v1-49
    Fahraeus, R., Paramio, J.M., Ball, K.L., Lain, S.,Lane, D.P., 1996. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr. Biol.:CB. 6, 84-91
    Friedl, P., Wolf, K.,Lammerding, J., 2011. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55-64
    Gao, G.F., Parker, J.S., Reynolds, S.M., Silva, T.C., Wang, L.-B., Zhou, W., Akbani, R., Bailey, M., Balu, S., Berman, B.P., et al., 2019. Before and after:comparison of legacy and harmonized TCGA genomic data commons' data. Cell Syst. 9, 24-34 e10
    Garvalov, B.K., Muhammad, S.,Dobreva, G., 2019. Lamin B1 in cancer and aging. Aging 11, 7336-7338
    Gruenbaum, Y.,Foisner, R., 2015. Lamins:nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131-164
    Hanif, F., Muzaffar, K., Perveen, K., Malhi, S.M.,Simjee Sh, U., 2017. Glioblastoma multiforme:a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev.:APJCP. 18, 3-9
    Harada, T., Swift, J., Irianto, J., Shin, J.W., Spinler, K.R., Athirasala, A., Diegmiller, R., Dingal, P.C., Ivanovska, I.L.,Discher, D.E., 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669-682
    Ho, C.Y.,Lammerding, J., 2012. Lamins at a glance. J. Cell Sci. 125, 2087-2093
    Huang da, W., Sherman, B.T.,Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57
    Irianto, J., Pfeifer, C.R., Ivanovska, I.L., Swift, J.,Discher, D.E., 2016. Nuclear lamins in cancer. Cell. Mol. Bioeng. 9, 258-267
    Jooma, R., Waqas, M.,Khan, I., 2019. Diffuse low-grade glioma-changing concepts in diagnosis and management:a review. Asian J. Neurosurg. 14, 356-363
    Kong, L., Schafer, G., Bu, H., Zhang, Y., Zhang, Y.,Klocker, H., 2012. Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis 33, 751-759
    Lammerding, J., Schulze, P.C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R.D., Stewart, C.L.,Lee, R.T., 2004. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370-378
    Leman, E.S.,Getzenberg, R.H., 2002. Nuclear matrix proteins as biomarkers in prostate cancer. J. Cell. Biochem. 86, 213-223
    Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P.,Ellison, D.W., 2016. The 2016 World Health organization classification of tumors of the central nervous system:a summary. Acta Neuropathol. 131, 803-820
    Mejat, A., Decostre, V., Li, J., Renou, L., Kesari, A., Hantai, D., Stewart, C.L., Xiao, X., Hoffman, E., Bonne, G., et al., 2009. Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J. Cell Biol. 184, 31-44
    Nafe, R., Franz, K., Schlote, W.,Schneider, B., 2005. Morphology of tumor cell nuclei is significantly related with survival time of patients with glioblastomas. Clin. Cancer Res. 11, 2141-2148
    Nafe, R., Franz, K., Schlote, W.,Schneider, B., 2006. The morphology of perinecrotic tumor cell nuclei in glioblastomas shows a significant relationship with survival time. Oncol. Rep. 16, 555-562
    Nizamutdinov, D., Stock, E.M., Dandashi, J.A., Vasquez, E.A., Mao, Y., Dayawansa, S., Zhang, J., Wu, E., Fonkem, E.,Huang, J.H., 2018. Prognostication of survival outcomes in patients diagnosed with glioblastoma. World Neurosurg. 109, e67-e74
    Omuro, A.,DeAngelis, L.M., 2013. Glioblastoma and other malignant gliomas:a clinical review. JAMA. 310, 1842-1850
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.,Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504
    Shen, Y., Wang, X., Guo, S., Qiu, M., Hou, G.,Tan, Z., 2020. Evolutionary genomics analysis of human nucleus-encoded mitochondrial genes:implications for the roles of energy production and metabolic pathways in the pathogenesis and pathophysiology of demyelinating diseases. Neurosci. Lett. 715, 134600
    Skinner, B.M.,Johnson, E.E., 2017. Nuclear morphologies:their diversity and functional relevance. Chromosoma 126, 195-212
    Stadelmann, B., Khandjian, E., Hirt, A., Luthy, A., Weil, R.,Wagner, H.P., 1990. Repression of nuclear lamin A and C gene expression in human acute lymphoblastic leukemia and non-Hodgkin's lymphoma cells. Leuk. Res. 14, 815-821
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al., 2005. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550
    Sun, S., Xu, M.Z., Poon, R.T., Day, P.J.,Luk, J.M., 2010. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res. 9, 70-78
    Tan, Z., Li, J., Zhang, X., Yang, X., Zhang, Z., Yin, K.J.,Huang, H., 2018. P53 promotes retinoid acid-induced smooth muscle cell differentiation by targeting myocardin. Stem Cell. Dev. 27, 534-544
    Tilli, C.M., Ramaekers, F.C., Broers, J.L., Hutchison, C.J.,Neumann, H.A., 2003. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br. J. Dermatol. 148, 102-109
    Utsuno, H., Miyamoto, T., Oka, K.,Shiozawa, T., 2014. Morphological alterations in protamine-deficient spermatozoa. Hum. Reprod. 29, 2374-2381
    Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T., et al., 2010. The GeneMANIA prediction server:biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214-W220
    Webster, M., Witkin, K.L.,Cohen-Fix, O., 2009. Sizing up the nucleus:nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122, 1477-1486
    Wilson, K.L., Zastrow, M.S.,Lee, K.K., 2001. Lamins and disease:insights into nuclear infrastructure. Cell 104, 647-650
    Witthayanuwat, S., Pesee, M., Supaadirek, C., Supakalin, N., Thamronganantasakul, K.,Krusun, S., 2018. Survival analysis of glioblastoma multiforme. Asian Pac. J. Cancer Prev.:APJCP. 19, 2613-2617
    Wu, Z., Wu, L., Weng, D., Xu, D., Geng, J.,Zhao, F., 2009. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res.:CR. 28, 8
    Xu, D., Liu, A., Wang, X., Chen, Y., Shen, Y., Tan, Z.,Qiu, M., 2018a. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis. 9, 514
    Xu, D., Liu, A., Wang, X., Zhang, M., Zhang, Z., Tan, Z.,Qiu, M., 2018b. Identifying suitable reference genes for developing and injured mouse CNS tissues. Dev. Neurobiol. 78, 39-50
    Zink, D., Fischer, A.H.,Nickerson, J.A., 2004. Nuclear structure in cancer cells. Nat. Rev. Cancer 4, 677-687
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads (14) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return