5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China

doi: 10.1016/j.jgg.2021.08.008
Funds:

We thank the newborn screening team from Novogene Co. Ltd. for technical support of NGS. We are thankful to Drs. Richard Swank, Rong Mao, Minjie Luo, and Bai-Lin Wu for their comments and proofreading of this manuscript. This work was partially supported by grants from the Ministry of Science and Technology of China (2016YFC1000306), the Beijing Municipal Science and Technology Commission Foundation (Z181100001918003), the Beijing Municipal Commission of Health and Family Planning Foundation (2018-2-1141, 2020-4-1144), and Beihang University & Capital Medical University Advanced Innovation Center for Big Data-Based Precision Medicine Plan (BHME-201905).

  • Received Date: 2021-08-02
  • Accepted Date: 2021-08-12
  • Rev Recd Date: 2021-08-10
  • Publish Date: 2021-08-30
  • Different newborn screening (NBS) programs have been practiced in many countries since the 1960s. It is of considerable interest whether next-generation sequencing is applicable in NBS. We have developed a panel of 465 causative genes for 596 early-onset, relatively high incidence, and potentially actionable severe inherited diseases in our Newborn Screening with Targeted Sequencing (NESTS) program to screen 11,484 babies in 8 Women and Children's hospitals nationwide in China retrospectively. The positive rate from preliminary screening of NESTS was 7.85% (902/11,484). With 45.89% (414/902) follow-up of preliminary positive cases, the overall clinically confirmative diagnosis rate of monogenic disorders was 12.07% (50/414), estimating an average of 0.95% (7.85% × 12.07%) clinical diagnosis rate, suggesting that monogenic disorders account for a considerable proportion of birth defects. The disease/gene spectrum varied in different regions of China. NESTS was implemented in a hospital by screening 3923 newborns to evaluate its clinical application. The turn-around time of a primary report, including the sequencing period of < 7 days, was within 11 days by our automatic interpretation pipeline. Our results suggest that NESTS is feasible and cost-effective as a first-tier NBS program, which will change the status of current clinical practice of NBS in China.
  • loading
  • Adhikari, A.N., Gallagher, R.C., Wang, Y., Currier, R.J., Amatuni, G., Bassaganyas, L., Chen, F., Kundu, K., Kvale, M., Mooney, S.D., et al., 2020. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 26, 1392-1397.
    Almannai, M., Marom, R.,Sutton, V.R., 2016. Newborn screening:a review of history, recent advancements, and future perspectives in the era of next generation sequencing. Curr. Opin. Pediatr. 28, 694-699.
    Bailey, D.B., Jr.,Gehtland, L., 2015. Newborn screening:evolving challenges in an era of rapid discovery. JAMA 313, 1511-1512.
    Bassaganyas, L., Freedman, G., Vaka, D., Wan, E., Lao, R., Chen, F., Kvale, M., Currier, R.J., Puck, J.M.,Kwok, P.Y., 2018. Whole exome and whole genome sequencing with dried blood spot DNA without whole genome amplification. Hum. Mutat. 39, 167-171.
    Beckmann, J.S., 2015. Can we afford to sequence every newborn baby's genome? Hum. Mutat. 36, 283-286.
    Bell, C.J., Dinwiddie, D.L., Miller, N.A., Hateley, S.L., Ganusova, E.E., Mudge, J., Langley, R.J., Zhang, L., Lee, C.C., Schilkey, F.D., et al., 2011. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3, 65ra4.
    Berg, J.S., Agrawal, P.B., Bailey, D.B., Jr., Beggs, A.H., Brenner, S.E., Brower, A.M., Cakici, J.A., Ceyhan-Birsoy, O., Chan, K., Chen, F., et al., 2017. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics 139, e20162252.
    Bombard, Y., Miller, F.A., Hayeems, R.Z., Avard, D., Knoppers, B.M., Cornel, M.C.,Borry, P., 2009. The expansion of newborn screening:is reproductive benefit an appropriate pursuit? Nat. Rev. Genet. 10, 666-667.
    Cdc, 2001. Using tandem mass spectrometry for metabolic disease screening among newborns. A report of a work group. MMWR Recomm. Rep. 50, 1-34.
    Ceyhan-Birsoy, O., Murry, J.B., Machini, K., Lebo, M.S., Yu, T.W., Fayer, S., Genetti, C.A., Schwartz, T.S., Agrawal, P.B., Parad, R.B., et al., 2019. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns:Results from the BabySeq Project. Am. J. Hum. Genet. 104, 76-93.
    Chace, D.H., Kalas, T.A.,Naylor, E.W., 2002. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu. Rev. Genomics Hum. Genet. 3, 17-45.
    Chen, R.G., Qian, D.L.,Guo, D., 1986. Benefit of neonatal screening for phenylketouria. A report of the first case treated in China. Chin. Med. J. (Engl.) 99, 513-514.
    Chen, R.G., Sun, M., Ni, Y.Y., Pan, X.S., Chen, J.Z., Zhang, Y.F., Liu, H., Zhang, M.H., Xu, H.Z., Wu, Y.L., et al., 1984. Neonatal hypothyroidism, phenylketonuria and galactosemia screening in metropolitan Shanghai. Chin. Med. J. (Engl.) 97, 61-65.
    Dai, P., Huang, L.H., Wang, G.J., Gao, X., Qu, C.Y., Chen, X.W., Ma, F.R., Zhang, J., Xing, W.L., Xi, S.Y., et al., 2019. Concurrent Hearing and Genetic Screening of 180,469 Neonates with Follow-up in Beijing, China. Am. J. Hum. Genet. 105, 803-812.
    Frankel, L.A., Pereira, S.,McGuire, A.L., 2016. Potential Psychosocial Risks of Sequencing Newborns. Pediatrics 137 Suppl 1, S24-29.
    Friedman, J.M., Cornel, M.C., Goldenberg, A.J., Lister, K.J., Senecal, K., Vears, D.F., Global Alliance for, G., Health, R., Ethics Working Group Paediatric Task, T., 2017. Genomic newborn screening:public health policy considerations and recommendations. BMC Med. Genomics 10, 9.
    Fu, C., Luo, S., Li, Q., Xie, B., Yang, Q., Geng, G., Lin, C., Su, J., Zhang, Y., Wang, J., et al., 2018. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China:determination of optimal cutoff value to identify heterozygous female neonates. Sc.i Rep. 8, 833.
    Gelb, M.H., 2018. Newborn Screening for Lysosomal Storage Diseases:Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen 4, 23.
    Goldenberg, A.J.,Sharp, R.R., 2012. The ethical hazards and programmatic challenges of genomic newborn screening. JAMA 307, 461-462.
    Guthrie, R., 1969. Screening for phenylketonuria. Triangle 9, 104-109.
    Guthrie, R.,Susi, A., 1963. A Simple Phenylalanine Method for Detecting Phenylketonuria In Large Populations Of Newborn Infants. Pediatrics 32, 338-343.
    Hu, X., Li, N., Xu, Y., Li, G., Yu, T., Yao, R.E., Fu, L., Wang, J., Yin, L., Yin, Y., et al., 2018. Proband-only medical exome sequencing as a cost-effective first-tier genetic diagnostic test for patients without prior molecular tests and clinical diagnosis in a developing country:the China experience. Genet. Med. 20, 1045-1053.
    Kennedy, C.,McCann, D., 2004. Universal neonatal hearing screening moving from evidence to practice. Arch. Dis. Child Fetal Neonatal Ed. 89, F378-383.
    Kingsmore, S.F., 2016. Newborn testing and screening by whole-genome sequencing. Genet. Med. 18, 214-216.
    Lai, K., Huang, G., Su, L.,He, Y., 2017. The prevalence of thalassemia in mainland China:evidence from epidemiological surveys. Sci. Rep. 7, 920.
    Landau, Y.E., Lichter-Konecki, U.,Levy, H.L., 2014. Genomics in newborn screening. J. Pediatr. 164, 14-19.
    Lee, H., Lim, J., Shin, J.E., Eun, H.S., Park, M.S., Park, K.I., Namgung, R.,Lee, J.S., 2019. Implementation of a targeted next-generation sequencing panel for constitutional newborn screening in high-risk neonates. Yonsei Med. J. 60, 1061-1066.
    Liu, S.R.,Zuo, Q.H., 1986. Newborn screening for phenylketonuria in eleven districts. Chin. Med. J. (Engl.) 99, 113-118.
    Luo, X., Wang, R., Fan, Y., Gu, X.,Yu, Y., 2018. Next-generation sequencing as a second-tier diagnostic test for newborn screening. J. Pediatr. Endocrinol. Metab. 31, 927-931.
    Mak, C.M., Lee, H.C., Chan, A.Y.,Lam, C.W., 2013. Inborn errors of metabolism and expanded newborn screening:review and update. Crit. Rev. Clin. Lab. Sci. 50, 142-162.
    Pereira, S., Robinson, J.O., Gutierrez, A.M., Petersen, D.K., Hsu, R.L., Lee, C.H., Schwartz, T.S., Holm, I.A., Beggs, A.H., Green, R.C., et al., 2019. Perceived Benefits, Risks, and Utility of Newborn Genomic Sequencing in the BabySeq Project. Pediatrics 143, S6-S13.
    Posey, J.E., Rosenfeld, J.A., James, R.A., Bainbridge, M., Niu, Z., Wang, X., Dhar, S., Wiszniewski, W., Akdemir, Z.H., Gambin, T., et al., 2016. Molecular diagnostic experience of whole-exome sequencing in adult patients. Genet. Med. 18, 678-685.
    Qi, Y., Ma, Y.N.,Pan, H., 2017.[Personal evaluation on gene test to prevent birth defects]. Zhonghua Yi Xue Za Zhi 97, 1207-1208.
    Rashed, M.S., 2001. Clinical applications of tandem mass spectrometry:ten years of diagnosis and screening for inherited metabolic diseases. J. Chromatogr B Biomed. Sci. Appl. 758, 27-48.
    Reinstein, E., 2015. Challenges of using next generation sequencing in newborn screening. Genet. Res. (Camb.) 97, e21.
    Retterer, K., Juusola, J., Cho, M.T., Vitazka, P., Millan, F., Gibellini, F., Vertino-Bell, A., Smaoui, N., Neidich, J., Monaghan, K.G., et al., 2016. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696-704.
    Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al., 2015. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424.
    Roberts, J.S., Dolinoy, D.,Tarini, B., 2014. Emerging issues in public health genomics. Annu Rev Genomics Hum. Genet. 15, 461-480.
    Shang, X., Peng, Z., Ye, Y., Asan, Zhang, X., Chen, Y., Zhu, B., Cai, W., Chen, S., Cai, R., et al., 2017. Rapid targeted next-generation sequencing platform for molecular screening and clinical genotyping in subjects with hemoglobinopathies. EBioMedicine 23, 150-159.
    Tarini, B.A., Christakis, D.A., Welch, H.G., 2006. State newborn screening in the tandem mass spectrometry era:more tests, more false-positive results. Pediatrics 118, 448-456.
    Tarini, B.A., Goldenberg, A.J., 2012. Ethical issues with newborn screening in the genomics era. Annu. Rev. Genomics Hum. Genet. 13, 381-393.
    VanNoy, G.E., Genetti, C.A., McGuire, A.L., Green, R.C., Beggs, A.H., Holm, I.A.,BabySeq Project, G., 2019. Challenging the current recommendations for carrier testing in children. Pediatrics 143, S27-S32.
    Wilcken, B., Wiley, V., Hammond, J.,Carpenter, K., 2003. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med. 348, 2304-2312.
    Wilson, J.M.,Jungner, Y.G., 1968.[Principles and practice of mass screening for disease]. Bol. Oficina Sanit Panam. 65, 281-393.
    Xiong, F., Sun, M., Zhang, X., Cai, R., Zhou, Y., Lou, J., Zeng, L., Sun, Q., Xiao, Q., Shang, X., et al., 2010. Molecular epidemiological survey of haemoglobinopathies in the Guangxi Zhuang Autonomous Region of southern China. Clin. Genet. 78, 139-148.
    Yan, T., Cai, R., Mo, O., Zhu, D., Ouyang, H., Huang, L., Zhao, M., Huang, F., Li, L., Liang, X., et al., 2006. Incidence and complete molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Guangxi Zhuang autonomous region of southern China:description of four novel mutations. Haematologica 91, 1321-1328.
    Yang, Y., Muzny, D.M., Reid, J.G., Bainbridge, M.N., Willis, A., Ward, P.A., Braxton, A., Beuten, J., Xia, F., Niu, Z., et al., 2013. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 369, 1502-1511.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (409) PDF downloads (41) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return