5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 2
Mar.  2022
Turn off MathJax
Article Contents

Mapping of de novo mutations in primary biliary cholangitis to a disease-specific co-expression network underlying homeostasis and metabolism

doi: 10.1016/j.jgg.2021.07.019
Funds:

and 81570469 to R.Q.T.), by grants from Jiangsu provincial research fund (BE2017713 to X.D.L and BL2018657 to Y.T.), and a grant from National Key R&

We are grateful to all the subjects for donating DNA samples. This work was supported in part by grants from the National Natural Science Foundation of China (81870397 to X.D.L.

D Program of China (2016YFC0900400).

81620108002, 81771732, 81830016 to X.M

  • Received Date: 2021-05-08
  • Accepted Date: 2021-07-26
  • Rev Recd Date: 2021-07-22
  • Publish Date: 2021-08-22
  • Primary biliary cholangitis (PBC) is an autoimmune disease involving dysregulation of a broad array of homeostatic and metabolic processes. Although considerable single-nucleotide polymorphisms have been unveiled, a large fraction of risk factors remains enigmatic. Candidate genes with rare mutations that tend to confer more deleterious effects need to be identified. To help pinpoint cellular and developmental mechanisms beyond common noncoding variants, we integrate whole exome sequencing with integrative network analysis to investigate genes harboring de novo mutations. Prominent convergence has been revealed on a network of disease-specific co-expression comprised of 55 genes associated with homeostasis and metabolism. The transcription factor gene MEF2D and the DNA repair gene PARP2 are highlighted as hub genes and identified to be up- and down-regulated, respectively, in peripheral blood data set. Enrichment analysis demonstrates that altered expression of MEF2D and PARP2 may trigger a series of molecular and cellular processes with pivotal roles in PBC pathophysiology. Our study identifies genes with de novo mutations in PBC and suggests that a subset of genes in homeostasis and metabolism tend to act in synergy through converging on co-expression network, providing novel insights into the etiology of PBC and expanding the pool of molecular candidates for discovering clinically actionable biomarkers.
  • loading
  • Acuna-Hidalgo, R., Veltman, J.A., Hoischen, A., 2016. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241
    Asselta, R., Paraboschi, E.M., Gerussi, A., Cordell, H.J., Mells, G.F., Sandford, R.N., Jones, D.E., Nakamura, M., Ueno, K., Hitomi, Y., et al., 2021. X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. Gastroenterology 160, 2483-2495
    Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pages, F., Trajanoski, Z., Galon, J., 2009. ClueGO:a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093
    Blake, J.A., Eppig, J.T., Kadin, J.A., Richardson, J.E., Smith, C.L., Bult, C.J., the Mouse Genome Database, G., 2017. Mouse Genome Database (MGD)-2017:community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45, D723-D729
    Cargnello, M., Roux, P.P., 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50-83
    Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., Lin, C.Y., 2014. cytoHubba:Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, 1-7
    Cordell, H.J., Fryett, J.J., Ueno, K., Darlay, R., Aiba, Y., Hitomi, Y., Kawashima, M., Nishida, N., Khor, S.-S., Gervais, O., et al., 2021. An international genome-wide meta-analysis of primary biliary cholangitis:novel risk loci and candidate drugs. J. Hepatol
    Curtin, N.J., Szabo, C., 2020. Poly(ADP-ribose) polymerase inhibition:past, present and future. Nat. Rev. Drug Discov
    de Ligt, J., Willemsen, M.H., van Bon, B.W., Kleefstra, T., Yntema, H.G., Kroes, T., Vulto-van Silfhout, A.T., Koolen, D.A., de Vries, P., Gilissen, C., et al., 2012. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921-1929
    Di Giorgio, E., Wang, L., Xiong, Y., Akimova, T., Christensen, L.M., Han, R., Samanta, A., Trevisanut, M., Bhatti, T.R., Beier, U.H., et al., 2020. Mef2d sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. J. Clin. Invest
    Dominguez-Villar, M., Hafler, D.A., 2018. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665-673
    Dong, M., Li, J., Tang, R., Zhu, P., Qiu, F., Wang, C., Qiu, J., Wang, L., Dai, Y., Xu, P., et al., 2015. Multiple genetic variants associated with primary biliary cirrhosis in a Han Chinese population. Clin. Rev. Allergy Immunol. 48, 316-321
    Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Dwyer, S., Gormley, P., Georgieva, L., Rees, E., Palta, P., et al., 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179-184
    Golan, M.P., Styczynska, M., Jozwiak, K., Walecki, J., Maruszak, A., Pniewski, J., Lugiewicz, R., Filipek, S., Zekanowski, C., Barcikowska, M., 2007. Early-onset Alzheimer's disease with a de novo mutation in the presenilin 1 gene. Exp. Neurol. 208, 264-268
    Halmos, B., Szalay, F., Cserniczky, T., Nemesanszky, E., Lakatos, P., Barlage, S., Schmitz, G., Romics, L., Csaszar, A., 2000. Association of primary biliary cirrhosis with vitamin D receptor BsmI genotype polymorphism in a Hungarian population. Dig. Dis. Sci. 45, 1091-1095
    Harada, K., Kakuda, Y., Sato, Y., Ikeda, H., Shimoda, S., Yamamoto, Y., Inoue, H., Ohta, H., Kasashima, S., Kawashima, A., Nakanuma, Y., 2014. Alteration of energy metabolism in the pathogenesis of bile duct lesions in primary biliary cirrhosis. J. Clin. Pathol. 67, 396-402
    Henze, L., Schwinge, D., Schramm, C., 2020. The Effects of Androgens on T Cells:Clues to Female Predominance in Autoimmune Liver Diseases? Front. Immunol. 11, 1567
    Himoto, T., Yoneyama, H., Kurokochi, K., Inukai, M., Masugata, H., Goda, F., Haba, R., Watanabe, S., Senda, S., Masaki, T., 2011. Contribution of zinc deficiency to insulin resistance in patients with primary biliary cirrhosis. Biol. Trace. Elem. Res. 144, 133-142
    Hirschfield, G.M., Chapman, R.W., Karlsen, T.H., Lammert, F., Lazaridis, K.N., Mason, A.L., 2013. The genetics of complex cholestatic disorders. Gastroenterology 144, 1357-1374
    Hirschfield, G.M., Liu, X., Xu, C., Lu, Y., Xie, G., Lu, Y., Gu, X., Walker, E.J., Jing, K., Juran, B.D., et al., 2009. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360, 2544-2555
    Inamine, T., Higa, S., Noguchi, F., Kondo, S., Omagari, K., Yatsuhashi, H., Tsukamoto, K., Nakamura, M., 2013. Association of genes involved in bile acid synthesis with the progression of primary biliary cirrhosis in Japanese patients. J. Gastroenterol. 48, 1160-1170
    Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al., 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221
    Iwasaki, H., 2019. Involvement of bile circulation and hepatic inflammation in glucose homeostasis in a case of primary biliary cholangitis. J. Clin. Transl. Endocrinol. 13, 100051
    Johnatty, S.E., Tyrer, J.P., Kar, S., Beesley, J., Lu, Y., Gao, B., Fasching, P.A., Hein, A., Ekici, A.B., Beckmann, M.W., et al., 2015. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes:Findings from the Ovarian Cancer Association Consortium. Clin. Cancer Res. 21, 5264-5276
    Karlsen, T.H., Lammert, F., Thompson, R.J., 2015. Genetics of liver disease:From pathophysiology to clinical practice. J. Hepatol. 62, S6-S14
    Langfelder, P., Horvath, S., 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559
    Lee, J.S., Haug, B.L., Sibley, J.T., 1994. Decreased mRNA levels coding for poly(ADP-ribose) polymerase in lymphocytes of patients with SLE. Lupus 3, 113-116
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Subgroup, 1000 Genome Project Data Processing, 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079
    Li, J., Shi, L., Zhang, K., Zhang, Y., Hu, S., Zhao, T., Teng, H., Li, X., Jiang, Y., Ji, L., Sun, Z., 2018. VarCards:an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 46, D1039-D1048
    Lindor, K.D., Bowlus, C.L., Boyer, J., Levy, C., Mayo, M., 2019. Primary Biliary Cholangitis:2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 69, 394-419
    Liu, J.Z., Almarri, M.A., Gaffney, D.J., Mells, G.F., Jostins, L., Cordell, H.J., Ducker, S.J., Day, D.B., Heneghan, M.A., Neuberger, J.M., et al., Wellcome Trust Case Control, C., 2012. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 44, 1137-1141
    Lleo, A., Shimoda, S., Ishibashi, H., Gershwin, M.E., 2011. Primary biliary cirrhosis and autoimmune hepatitis:apotopes and epitopes. J. Gastroenterol. 46 Suppl 1, 29-38
    Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., et al., 2009. Finding the missing heritability of complex diseases. Nature 461, 747-753
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A., 2010. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303
    Mells, G.F., Floyd, J.A., Morley, K.I., Cordell, H.J., Franklin, C.S., Shin, S.Y., Heneghan, M.A., Neuberger, J.M., Donaldson, P.T., Day, D.B., et al., 2011. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43, 329-332
    Miao, X., Sun, W., Fu, Y., Miao, L., Cai, L., 2013. Zinc homeostasis in the metabolic syndrome and diabetes. Front. Med. 7, 31-52
    Michaelson, J.J., Shi, Y., Gujral, M., Zheng, H., Malhotra, D., Jin, X., Jian, M., Liu, G., Greer, D., Bhandari, A., et al., 2012. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431-1442
    Nakagawa, R., Muroyama, R., Saeki, C., Goto, K., Kaise, Y., Koike, K., Nakano, M., Matsubara, Y., Takano, K., Ito, S., et al., 2017. miR-425 regulates inflammatory cytokine production in CD4(+) T cells via N-Ras upregulation in primary biliary cholangitis. J. Hepatol. 66, 1223-1230
    Nakamura, M., Nishida, N., Kawashima, M., Aiba, Y., Tanaka, A., Yasunami, M., Nakamura, H., Komori, A., Nakamuta, M., Zeniya, M., et al., 2012. Genome-wide Association Study Identifies TNFSF15 and POU2AF1 as Susceptibility Loci for Primary Biliary Cirrhosis in the Japanese Population. Am. J. Hum. Genet. 91, 721-728
    Natarajan, S.K., Thomas, S., Ramachandran, A., Pulimood, A.B., Balasubramanian, K.A., 2005. Retinoid metabolism during development of liver cirrhosis. Arch. Biochem. Biophys. 443, 93-100
    Nikkila, K., Nissinen, M.J., Gylling, H., Isoniemi, H., Miettinen, T.A., 2008. Serum sterols in patients with primary biliary cirrhosis and acute liver failure before and after liver transplantation. J. Hepatol. 49, 936-945
    Pinero, J., Queralt-Rosinach, N., Bravo, A., Deu-Pons, J., Bauer-Mehren, A., Baron, M., Sanz, F., Furlong, L.I., 2015. DisGeNET:a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015, bav028
    Qiu, F., Tang, R., Zuo, X., Shi, X., Wei, Y., Zheng, X., Dai, Y., Gong, Y., Wang, L., Xu, P., et al., 2017. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat. Commun. 8, 14828
    Rani, N., Bharti, S., Tomar, A., Dinda, A.K., Arya, D.S., Bhatia, J., 2016. Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic. Res. 50, 1226-1236
    Rudic, J.S., Poropat, G., Krstic, M.N., Bjelakovic, G., Gluud, C., 2011. Hormone replacement for osteoporosis in women with primary biliary cirrhosis. Cochrane Database Syst. Rev. CD009146
    Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., Kosmicki, J.A., Rehnstrom, K., Mallick, S., Kirby, A., et al., 2014. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944-950
    Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., et al., 2012. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237-241
    Sawada, N., Murata, M., Kikuchi, K., Osanai, M., Tobioka, H., Kojima, T., Chiba, H., 2003. Tight junctions and human diseases. Med. Electron Microsc. 36, 147-156
    Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., et al., 2004. Large-scale copy number polymorphism in the human genome. Science (80-.). 305, 525-528
    Seki, H., Ikeda, F., Nanba, S., Moritou, Y., Takeuchi, Y., Yasunaka, T., Onishi, H., Miyake, Y., Takaki, A., Nouso, K., et al., 2015. Aberrant Expression of Keratin 7 in Hepatocytes as a Predictive Marker of Rapid Progression to Hepatic Failure in Asymptomatic Primary Biliary Cirrhosis. Acta Med. Okayama 69, 137-144
    Shah, R.A., Kowdley, K. V, 2020. Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol. Hepatol. 5, 306-315
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504
    Sun, S.C., 2017. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545-558
    Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al., 2015. STRING v10:protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447-D452
    Tanaka, A., Leung, P.S.C., Gershwin, M.E., 2018. Evolution of our understanding of PBC. Best Pract. Res. Clin. Gastroenterol. 34-35, 3-9
    Tang, W., Wang, H., Claudio, E., Tassi, I., Ha, H.L., Saret, S., Siebenlist, U., 2014. The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 41, 555-566
    Vida, A., Marton, J., Miko, E., Bai, P., 2017. Metabolic roles of poly(ADP-ribose) polymerases. Semin. Cell Dev. Biol. 63, 135-143
    Vierling, J.M., 1981. Copper metabolism in primary biliary cirrhosis. Semin. Liver Dis. 1, 293-308
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164
    Zhao, J., Li, B., Shu, C., Ma, Y., Gong, Y., 2017. Downregulation of miR-30a is associated with proliferation and invasion via targeting MEF2D in cervical cancer. Oncol. Lett. 14, 7437-7442
    Zhong, B., Strnad, P., Selmi, C., Invernizzi, P., Tao, G.Z., Caleffi, A., Chen, M., Bianchi, I., Podda, M., Pietrangelo, A., et al., 2009. Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity. Hepatology 50, 546-554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (220) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return