5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 10
Oct.  2021
Turn off MathJax
Article Contents

Phase separation in RNA biology

doi: 10.1016/j.jgg.2021.07.012
Funds:

We apologize for being unable to cite all related publications due to space limitations. We thank Drs. Pilong Li and Yijun Qi for critical reading of the manuscript. This research was funded by TsinghuaPeking Center for Life Sciences.

  • Received Date: 2021-05-21
  • Accepted Date: 2021-07-20
  • Rev Recd Date: 2021-07-19
  • Publish Date: 2021-08-08
  • The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) is an advantageous strategy for cells to organize subcellular compartments for diverse functions. The involvement of LLPS is more widespread and overrepresented in RNA-related biological processes. This is in part because that RNAs are intrinsically multivalent macromolecules, and the presence of RNAs affects the formation, dissolution, and biophysical properties of biomolecular condensates formed by LLPS. Emerging studies have illustrated how LLPS participates in RNA transcription, splicing, processing, quality control, translation, and function. The interconnected regulation between LLPS and RNAs ensures tight control of RNA-related cellular functions.
  • loading
  • Allen, B.L., Taatjes, D.J., 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155-166.
    Almeida, M., Pintacuda, G., Masui, O., Koseki, Y., Gdula, M., Cerase, A., Brown, D., Mould, A., Innocent, C., Nakayama, M., et al., 2017. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081-1084.
    Banani, S.F., Lee, H.O., Hyman, A.A., Rosen, M.K., 2017. Biomolecular condensates:organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298.
    Banerjee, I., Miyake, Y., Nobs, S.P., Schneider, C., Horvath, P., Kopf, M., Matthias, P., Helenius, A., Yamauchi, Y., 2014. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346, 473-477.
    Bergeron-Sandoval, L.P., Safaee, N., Michnick, S.W., 2016. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067-1079.
    Biamonti, G., Vourc’h, C., 2010. Nuclear stress bodies. Cold Spring Harb. Perspect. Biol. 2, a000695.
    Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A.S., Yu, T., MarieNelly, H., McSwiggen, D.T., Kokic, G., Dailey, G.M., Cramer, P., et al., 2018. RNA polymerase Ⅱ clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833-840.
    Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al., 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420-435.
    Boija, A., Klein, I.A., Sabari, B.R., Dall’Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M., et al., 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842-1855.
    Braun, J.E., Huntzinger, E., Izaurralde, E., 2013. The role of GW182 proteins in miRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147-163.
    Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., Sukenik, S., Liu, Z., Lippincott-Schwartz, J., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578-1589.
    Cerase, A., Armaos, A., Neumayer, C., Avner, P., Guttman, M., Tartaglia, G.G., 2019. Phase separation drives X-chromosome inactivation: a hypothesis. Nat. Struct. Mol. Biol. 26, 331-334.
    Cerase, A., Smeets, D., Tang, Y.A., Gdula, M., Kraus, F., Spivakov, M., Moindrot, B., Leleu, M., Tattermusch, A., Demmerle, J., et al., 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc. Natl. Acad. Sci. U. S. A. 111, 2235-2240.
    Chen, X., Wei, M., Zheng, M.M., Zhao, J., Hao, H., Chang, L., Xi, P., Sun, Y., 2016. Study of RNA polymerase Ⅱ clustering inside live-cell nuclei using bayesian nanoscopy. ACS Nano 10, 2447-2454.
    Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., Cisse Ⅱ, 2018. Mediator and RNA polymerase Ⅱ clusters associate in transcription-dependent condensates. Science 361, 412-415.
    Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., et al., 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555.
    Cisse Ⅱ, Izeddin, I., Causse, S.Z., Boudarene, L., Senecal, A., Muresan, L., DugastDarzacq, C., Hajj, B., Dahan, M., Darzacq, X., 2013. Real-time dynamics of RNA polymerase Ⅱ clustering in live human cells. Science 341, 664-667.
    Conicella, A.E., Zerze, G.H., Mittal, J., Fawzi, N.L., 2016. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537-1549.
    Core, L., Adelman, K., 2019. Promoter-proximal pausing of RNA polymerase Ⅱ: a nexus of gene regulation. Genes Dev. 33, 960-982.
    Cramer, P., 2019. Organization and regulation of gene transcription. Nature 573, 45-54.
    Decker, C.J., Parker, R., 2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286.
    Dias, A.P., Dufu, K., Lei, H., Reed, R., 2010. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1, 97.
    Ding, D.Q., Okamasa, K., Katou, Y., Oya, E., Nakayama, J.I., Chikashige, Y., Shirahige, K., Haraguchi, T., Hiraoka, Y., 2019. Chromosome-associated RNAprotein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat. Commun. 10, 5598.
    Ding, D.Q., Okamasa, K., Yamane, M., Tsutsumi, C., Haraguchi, T., Yamamoto, M., Hiraoka, Y., 2012. Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science 336, 732-736.
    Drino, A., Schaefer, M.R., 2018. RNAs, phase separation, and membrane-less organelles: are post-transcriptional modifications modulating organelle dynamics? Bioessays 40, e1800085.
    Dumbovic, G., Biayna, J., Banus, J., Samuelsson, J., Roth, A., Diederichs, S., Alonso, S., Buschbeck, M., Perucho, M., Forcales, S.V., 2018. A novel long noncoding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res. 46, 5504-5524.
    Duronio, R.J., Marzluff, W.F., 2017. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol. 14, 726-738.
    Etibor, T.A., Yamauchi, Y., Amorim, M.J., 2021. Liquid biomolecular condensates and viral lifecycles: review and perspectives. Viruses 13, 366.
    Fang, X., Wang, L., Ishikawa, R., Li, Y., Fiedler, M., Liu, F., Calder, G., Rowan, B., Weigel, D., Li, P., et al., 2019. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature 569, 265-269.
    Fang, Y., Spector, D.L., 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818-823.
    Fang, X., Wu, Z., Raitskin, O., Webb, K., Voigt, P., Lu, T., Howard, M., Dean, C., 2020. The 30 processing of antisense RNAs physically links to chromatin-based transcriptional control. Proc. Natl. Acad. Sci. U. S. A. 117, 15316-15321.
    Fox, A.H., Lamond, A.I., 2010. Paraspeckles. Cold Spring Harb. Perspect. Biol. 2, a000687.
    Fu, Y., Zhuang, X., 2020. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955-963.
    Gaglia, G., Rashid, R., Yapp, C., Joshi, G.N., Li, C.G., Lindquist, S.L., Sarosiek, K.A., Whitesell, L., Sorger, P.K., Santagata, S., 2020. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat. Cell Biol. 22, 151-158.
    Gao, Y., Pei, G., Li, D., Li, R., Shao, Y., Zhang, Q.C., Li, P., 2019. Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res. 29, 767-769.
    Guillén-Boixet, J., Kopach, A., Holehouse, A.S., Wittmann, S., Jahnel, M., Schlüßler, R., Kim, K., Trussina, I.R.E.A., Wang, J., Mateju, D., et al., 2020. RNAinduced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346-361.
    Guo, C., Che, Z., Yue, J., Xie, P., Hao, S., Xie, W., Luo, Z., Lin, C., 2020. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6, eaay4858.
    Guo, J., Wei, L., Chen, S.S., Cai, X.W., Su, Y.N., Li, L., Chen, S., He, X.J., 2021. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J. Integr. Plant Biol. 63, 755-771.
    Guo, Y.E., Manteiga, J.C., Henninger, J.E., Sabari, B.R., Dall’Agnese, A., Hannett, N.M., Spille, J.-H., Afeyan, L.K., Zamudio, A.V., Shrinivas, K., et al., 2019. Pol Ⅱ phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543-548.
    Henninger, J.E., Oksuz, O., Shrinivas, K., Sagi, I., LeRoy, G., Zheng, M.M., Andrews, J.O., Zamudio, A.V., Lazaris, C., Hannett, N.M., et al., 2020. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207-225.
    Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K., Sharp, P.A., 2017. A phase separation model for transcriptional control. Cell 169, 13-23.
    Holoch, D., Moazed, D., 2015. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71-84.
    Hubstenberger, A., Courel, M., Benard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., Morlot, J.B., Munier, A., Fradet, M., et al., 2017. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144-157.
    Hurr, L., 2020. CDK-regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies. Dev. Cell 54, 379-394.
    Iserman, C., Desroches Altamirano, C., Jegers, C., Friedrich, U., Zarin, T., Fritsch, A.W., Mittasch, M., Domingues, A., Hersemann, L., Jahnel, M., et al., 2020a. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818-831.
    Iserman, C., Roden, C.A., Boerneke, M.A., Sealfon, R.S.G., McLaughlin, G.A., Jungreis, I., Fritch, E.J., Hou, Y.J., Ekena, J., Weidmann, C.A., et al., 2020b. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078-1091.e1076.
    Ishidate, T., Ozturk, A.R., Durning, D.J., Sharma, R., Shen, E.Z., Chen, H., Seth, M., Shirayama, M., Mello, C.C., 2018. ZNFX-1 functions within perinuclear nuage to balance epigenetic signals. Mol. Cell. 70, 639-649.
    Ivanov, P., Kedersha, N., Anderson, P., 2019. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 11, a032813.
    Jain, A., Vale, R.D., 2017. RNA phase transitions in repeat expansion disorders. Nature 546, 243-247.
    Jiang, L., Shao, C., Wu, Q.J., Chen, G., Zhou, J., Yang, B., Li, H., Gou, L.T., Zhang, Y., Wang, Y., et al., 2017. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat. Struct. Mol. Biol. 24, 816-824.
    Jolly, C., Usson, Y., Morimoto, R.I., 1999. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl. Acad. Sci. U. S. A. 96, 6769-6774.
    Kedersha, N., Panas, M.D., Achorn, C.A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., Lieberman, J., McInerney, G.M., Ivanov, P., et al., 2016. G3BPCaprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845-860.
    Khong, A., Matheny, T., Jain, S., Mitchell, S.F., Wheeler, J.R., Parker, R., 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808-820.
    Kim, E.Y., Wang, L., Lei, Z., Li, H., Fan, W., Cho, J., 2021. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. Native Plants 7, 303-309.
    Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S., Harding, H.P., 2003. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, C273-C284.
    Kroschwald, S., Maharana, S., Simon, A., 2017. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters. https://doi.org/10.19185/MATTERS.201702000010.
    Kumakura, N., Takeda, A., Fujioka, Y., Motose, H., Takano, R., Watanabe, Y., 2009. SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett. 583, 1261-1266.
    Kwon, I., Kato, M., Xiang, S., Wu, L., Theodoropoulos, P., Mirzaei, H., Han, T., Xie, S., Corden, J.L., McKnight, S.L., 2013. Phosphorylation-regulated binding of RNA polymerase Ⅱ to fibrous polymers of low-complexity domains. Cell 155, 1049-1060.
    Lafontaine, D.L.J., Riback, J.A., Bascetin, R., Brangwynne, C.P., 2020. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165-182.
    Langdon, E.M., Gladfelter, A.S., 2018. A new lens for RNA localization: liquid-liquid phase separation. Annu. Rev. Microbiol. 72, 255-271.
    Langdon, E.M., Qiu, Y., Ghanbari Niaki, A., McLaughlin, G.A., Weidmann, C.A., Gerbich, T.M., Smith, J.A., Crutchley, J.M., Termini, C.M., Weeks, K.M., et al., 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922-927.
    Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al., 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340.
    Li, W., Hu, J., Shi, B., Palomba, F., Digman, M.A., Gratton, E., Jiang, H., 2020. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960-972.
    Liao, S.E., Regev, O., 2020. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 49, 636-645.
    Lin, Y., Zhou, X., Kato, M., Liu, D., Ghaemmaghami, S., Tu, B.P., McKnight, S.L., 2020. Redox-mediated regulation of an evolutionarily conserved cross-beta structure formed by the TDP43 low complexity domain. Proc. Natl. Acad. Sci. U. S. A. 117, 28727-28734.
    Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., Pan, T., 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560-564.
    Loda, A., Heard, E., 2019. Xist RNA in action: past, present, and future. PLoS Genet. 15, e1008333.
    Loke, J.C., Stahlberg, E.A., Strenski, D.G., Haas, B.J., Wood, P.C., Li, Q.Q., 2005. Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol. 138, 1457-1468.
    Lu, F., Portz, B., Gilmour, D.S., 2019. The C-terminal domain of RNA polymerase Ⅱ is a multivalent targeting sequence that supports Drosophila development with only consensus heptads. Mol. Cell 73, 1232-1242.
    Lu, H., Yu, D., Hansen, A.S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X., Zhou, Q., 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase Ⅱ. Nature 558, 318-323.
    Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y.I., Luo, K., 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453-464.
    Luo, Y., Na, Z., Slavoff, S.A., 2018. P-bodies: composition, properties, and functions. Biochemistry 57, 2424-2431.
    Ma, W., Mayr, C., 2018. A membraneless organelle associated with the endoplasmic reticulum enables 30UTR-mediated protein-protein interactions. Cell 175, 1492-1506.
    Ma, W., Zheng, G., Xie, W., Mayr, C., 2021. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. Elife 10, e64252.
    Mallik, M., Lakhotia, S.C., 2009. RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 6, 464-478.
    Mateju, D., Eichenberger, B., Voigt, F., Eglinger, J., Roth, G., Chao, J.A., 2020. Singlemolecule imaging reveals translation of mRNAs localized to stress granules. Cell 183, 1801-1812.
    Metz, A., Soret, J., Vourc’h, C., Tazi, J., Jolly, C., 2004. A key role for stress-induced satellite Ⅲ transcripts in the relocalization of splicing factors into nuclear stress granules. J. Cell Sci. 117, 4551-4558.
    Moindrot, B., Brockdorff, N., 2016. RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin. Cell Dev. Biol. 56, 58-70.
    Murray, D.T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., Tycko, R., 2017. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615-627.
    Ninomiya, K., Adachi, S., Natsume, T., Iwakiri, J., Terai, G., Asai, K., Hirose, T., 2020. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729.
    Pandya-Jones, A., Markaki, Y., Serizay, J., Chitiashvili, T., Mancia Leon, W.R., Damianov, A., Chronis, C., Papp, B., Chen, C.K., McKee, R., et al., 2020. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145-151.
    Phillips, C.M., Montgomery, T.A., Breen, P.C., Ruvkun, G., 2012. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev. 26, 1433-1444.
    Rawat, P., Boehning, M., Hummel, B., Aprile-Garcia, F., Pandit, A.S., Eisenhardt, N., Khavaran, A., Niskanen, E., Vos, S.M., Palvimo, J.J., et al., 2021. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol. Cell 81, 1013-1026.
    Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M.-T., Kriwacki, R.W., Brangwynne, C.P., 2020. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209-214.
    Ries, R.J., Zaccara, S., Klein, P., Olarerin-George, A., Namkoong, S., Pickering, B.F., Patil, D.P., Kwak, H., Lee, J.H., Jaffrey, S.R., 2019. m6A enhances the phase separation potential of mRNA. Nature 571, 424-428.
    Rosa, S., Duncan, S., Dean, C., 2016. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031.
    Sabari, B.R., Dall’Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al., 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958.
    Sanders, D.W., Kedersha, N., Lee, D.S.W., Strom, A.R., Drake, V., Riback, J.A., Bracha, D., Eeftens, J.M., Iwanicki, A., Wang, A., et al., 2020. Competing proteinRNA interaction networks control multiphase intracellular organization. Cell 181, 306-324.
    Savastano, A., Ibanez de Opakua, A., Rankovic, M., Zweckstetter, M., 2020. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerasecontaining condensates. Nat. Commun. 11, 6041.
    Schmidt, H.B., Barreau, A., Rohatgi, R., 2019. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890.
    Schutz, S., Noldeke, E.R., Sprangers, R., 2017. A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Res. 45, 6911-6922.
    Sheth, U., Parker, R., 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808.
    Sheu-Gruttadauria, J., MacRae, I.J., 2018. Phase transitions in the assembly and function of human miRISC. Cell 173, 946-957.
    Shin, Y., Brangwynne, C.P., 2017. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382.
    Shrinivas, K., Sabari, B.R., Coffey, E.L., Klein, I.A., Boija, A., Zamudio, A.V., Schuijers, J., Hannett, N.M., Sharp, P.A., Young, R.A., et al., 2019. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549-561.
    Smeets, D., Markaki, Y., Schmid, V.J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., et al., 2014. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenet. Chromatin 7, 8.
    Song, X., Li, Y., Cao, X., Qi, Y., 2019. MicroRNAs and their regulatory roles in plantenvironment interactions. Annu. Rev. Plant Biol. 70, 489-525.
    Song, P., Yang, J., Wang, C., Lu, Q., Shi, L., Tayier, S., Jia, G., 2021. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Mol. Plant 14, 571-587.
    Su, J.M., Wilson, M.Z., Samuel, C.E., Ma, D., 2021. Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. Viruses 13, 126.
    Uebel, C.J., Anderson, D.C., Mandarino, L.M., Manage, K.I., Aynaszyan, S., Phillips, C.M., 2018. Distinct regions of the intrinsically disordered protein MUT-16 mediate assembly of a small RNA amplification complex and promote phase separation of Mutator foci. PLoS Genet. 14, e1007542.
    Wan, G., Fields, B.D., Spracklin, G., Shukla, A., Phillips, C.M., Kennedy, S., 2018. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679-683.
    Wang, A., Conicella, A.E., Schmidt, H.B., Martin, E.W., Rhoads, S.N., Reeb, A.N., Nourse, A., Ramirez Montero, D., Ryan, V.H., Rohatgi, R., et al., 2018a. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452.
    Wang, J., Shi, C., Xu, Q., Yin, H., 2021a. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discov 7, 5.
    Wang, J., Wang, L., Diao, J., Shi, Y.G., Shi, Y., Ma, H., Shen, H., 2020. Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein Cell 11, 304-307.
    Wang, J., Yu, H., Ma, Q., Zeng, P., Wu, D., Hou, Y., Liu, X., Jia, L., Sun, J., Chen, Y., et al., 2021b. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1-16.
    Wang, Y., Hu, S.B., Wang, M.R., Yao, R.W., Wu, D., Yang, L., Chen, L.L., 2018b. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20, 1145-1158.
    Wu, Z., Fang, X., Zhu, D., Dean, C., 2020. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism. Plant Physiol. 182, 27-37.
    Xiang, S., Kato, M., Wu, L.C., Lin, Y., Ding, M., Zhang, Y., Yu, Y., McKnight, S.L., 2015. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829-839.
    Xie, D., Chen, M., Niu, J., Wang, L., Li, Y., Fang, X., Li, P., Qi, Y., 2020. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol. 23, 32-39.
    Xing, Y.H., Yao, R.W., Zhang, Y., Guo, C.J., Jiang, S., Xu, G., Dong, R., Yang, L., Chen, L.L., 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169, 664-678.
    Yamazaki, T., Hirose, T., 2015. The building process of the functional paraspeckle with long non-coding RNAs. Front. Biosci. 7, 1-41.
    Yamazaki, T., Nakagawa, S., Hirose, T., 2019. Architectural RNAs for membraneless nuclear body formation. Cold Spring Harbor Symp. Quant. Biol. 84, 227-237.
    Yamazaki, T., Souquere, S., Chujo, T., Kobelke, S., Chong, Y.S., Fox, A.H., Bond, C.S., Nakagawa, S., Pierron, G., Hirose, T., 2018. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038-1053.
    Yang, P., Mathieu, C., Kolaitis, R.-M., Zhang, P., Messing, J., Yurtsever, U., Yang, Z., Wu, J., Li, Y., Pan, Q., et al., 2020. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325-345.
    Yao, R.W., Xu, G., Wang, Y., Shan, L., Luan, P.F., Wang, Y., Wu, M., Yang, L.Z., Xing, Y.H., Yang, L., et al., 2019. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767-783.
    Yap, K., Mukhina, S., Zhang, G., Tan, J.S.C., Ong, H.S., Makeyev, E.V., 2018. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol. Cell 72, 525-540.
    Zhang, Y., Yang, M., Duncan, S., Yang, X., Abdelhamid, M.A.S., Huang, L., Zhang, H., Benfey, P.N., Waller, Z.A.E., Ding, Y., 2019. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746-11754.
    Zhao, D., Xu, W., Zhang, X., Wang, X., Ge, Y., Yuan, E., Xiong, Y., Wu, S., Li, S., Wu, N., et al., 2021. Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2. Protein Cell 12, 734-740.
    Zuo, L., Zhang, G., Massett, M., Cheng, J., Guo, Z., Wang, L., Gao, Y., Li, R., Huang, X., Li, P., et al., 2021. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 12, 1491.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (393) PDF downloads (31) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return