5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

A backbone parent contributes core genomic architecture to pedigree breeding of early-season indica rice

doi: 10.1016/j.jgg.2021.07.011
Funds:

This work was supported by grants from the Chinese 863 Program (2014AA10A604), the National Natural Science Foundation of China (31701398 and 31501288), Zhejiang Province Natural Science Foundation of China (LQ16C130002), Science and Technology Project of Zhejiang Province (2016C02050-4). We are grateful to Professor Jian Zhang (National Rice Research Institute) for kindly providing help with writing improvement.

  • Received Date: 2021-02-08
  • Accepted Date: 2021-07-18
  • Rev Recd Date: 2021-07-13
  • Publish Date: 2021-11-20
  • loading
  • Chen, J., Du, C., Zhang, H., Dai, D., Wu, M., Ma, L., 2019. Limited yield advantage of early-season rice hybrids over inbreds in middle-lower reaches of the Yangtze River. Mol. Breed. 39, 107.
    Chen, S., Lin, Z., Zhou, D., Wang, C., Li, H., Yu, R., Deng, H., Tang, X., Zhou, S., Deng, X., et al., 2017. Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Sci. Rep. 7, 45685.
    Chen, Z., Li, X., Lu, H., Gao, Q., Du, H., Peng, H., Qin, P., Liang, C., 2020. Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice. J. Genet. Genom. 47, 637-649.
    Fradgley, N., Gardner, K., Cockram, J., Elderfield, J., Hichey, J., Howell, P., Jackson, R., Mackay, I., 2019. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol. 17, e3000071.
    Gao, H., Jin, M., Zheng, X., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., et al., 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 16337-16342.
    Han, Z., Hu, Y., Tian, Q., Cao, Y., Si, A., Si, Z., Zang, Y., Xu, C., Shen, W., Dai, F., et al., 2020. Genomic signatures and candidate genes of lint yield and fibre quality improvement in Upland cotton in Xinjiang. Plant Biotechnol. J. 18, 2 002-2014.
    Huang, X., Kurata, N., Wei, X., Wang, Z., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497.
    Li, C., Song, W., Luo, Y., Gao, S., Zhang, R., Shi, Z., Wang, X., Wang, R., Wang, F., Wang, J., et al., 2019. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Mol. Plant 12, 402-409.
    Huang, J., Li, J., Zhou, J., Wang, L., Yang, S., Hurst, L., Li, W., Tian, D., 2018. Identifying a large number of high-yield genes in rice by pedigree analysis, wholegenome sequencing, and CRISPR-Cas9 gene knockout. Proc. Natl. Acad. Sci. U. S. A. 115, E7559-E7567.
    Li, X., Chen, Z., Zhang, G., Lu, H., Qin, P., Qi, M., Yu, Y., Jiao, B., Zhao, X., Gao, Q., et al., 2020. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 63, 1688-1702.
    Ma, X., Wang, Z., Li, W., Zhang, Y., Zhou, X., Liu, Y., Ren, Z., Pei, X., Zhou, K., Zhang, W., et al., 2019. Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol. J. 17, 762-775.
    Takahashi, Y., Teshima, K., Yokoi, S., Innan, H., Shimamoto, K., 2009. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. U. S. A. 106, 4555-4560.
    Tang, S., Wang, X., Liu, X., 2012. Study on the renewed tendency and key backboneparents of inbred rice varieties (O. sativa L.) in China. Sci. Agric. Sin. 45, 1455-1464 (in Chinese, with English abstract).
    Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R., Zhang, F., et al., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43.
    Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, Kai, Zhao, H., Yang, M., Li, P., Zhang, X., Yuan, J., et al., 2015. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl. Acad. Sci. U. S. A. 112, E5411-E5419.
    Zhang, B., Liu, H., Qi, F., Zhang, Z., Li, Q., Han, Z., Xing, Y., 2019. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice 12, 48.
    Zhang, J., Zhou, X., Yan, W., Zhang, Z., Lu, L., Han, Z., Zhao, H., Liu, H., Song, P., Hu, Y., et al., 2015. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol. 208, 1056-1066.
    Zhou, D., Chen, W., Lin, Z., Chen, H., Wang, C., Li, H., Yu, R., Zhang, F., Zhen, G., Yi, J., et al., 2016. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnol. J. 14, 638-648.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (220) PDF downloads (33) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return