5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor

doi: 10.1016/j.jgg.2021.06.018
Funds:

We thank Quanxin Long for providing some instrument support, LongXiang Xie, Xiangke Duan, and Qiming Li for academic advice, and anonymous reviewers for professional advice and recognition of this work. This work was supported by the National Natural Science Foundation of China (82072246, 81871182), National key R&D plan (2016YFC0502304).

  • Received Date: 2020-10-19
  • Accepted Date: 2021-06-22
  • Rev Recd Date: 2021-06-20
  • Publish Date: 2021-11-20
  • L-Arginine is the precursor of nitric oxide (NO), a host immune effector against intracellular pathogens including Mycobacterium tuberculosis (M. tb). Pathogens including M. tb have evolved various strategies targeting arginine to block the production of NO for better survival and proliferation. However, L-arginine metabolism and regulation in Mycobacterium are poorly understood. Here, we report the identification of M. smegmatis MSMEG_1415 (homolog of M. tb Rv2324) as an arginine-responsive transcriptional factor regulating the arginase pathway. In the absence of L-arginine, MSMEG_1415 acts as a repressor to inhibit the transcription of the roc (for arginine, ornithine catabolism) gene cluster, thereby switching off the arginase pathway. Treatment with L-arginine relieves the transcriptional inhibition of MSMEG_1415 on the roc gene cluster to activate the arginase pathway. Moreover, the L-arginine-MSMEG_1415 complex activates the transcription of the roc gene cluster by recognizing and binding a 15-bp palindrome motif, thereby preventing the excess accumulation of L-arginine in M. smegmatis. Physiologically, MSMEG_1415 confers mycobacteria resistance to starvation and fluoroquinolones exposure, suggestive of its important role in M. smegmatis persistence. The results uncover a unique regulatory mechanism of arginine metabolism in mycobacteria and identify M. tb Rv2324 as an attractive candidate target for the design of drugs against tuberculosis.
  • loading
  • Benton, H.P., Wong, D.M., Trauger, S.A., Siuzdak, G., 2008. XCMS2:processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal. Chem. 80, 6382-6389.
    Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., Duncan, K., 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717-731.
    Bogdan, C., 2015. Nitric oxide synthase in innate and adaptive immunity:an update. Trends Immunol. 36, 161-178.
    Boshoff, H.I., Barry 3rd, C.E., 2005. Tuberculosis-metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70-80.
    Boucher, J.L., Moali, C., Tenu, J.P., 1999. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell. Mol. Life Sci. 55, 1015-1028.
    Bukau, B., Weissman, J., Horwich, A., 2006. Molecular chaperones and protein quality control. Cell 125, 443-451.
    Bussiere, F.I., Chaturvedi, R., Cheng, Y., Gobert, A.P., Asim, M., Blumberg, D.R., Xu, H., Kim, P.Y., Hacker, A., Casero Jr., R.A., et al., 2005. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitricoxide synthase translation. J. Biol. Chem. 280, 2409-2412.
    Calogero, S., Gardan, R., Glaser, P., Schweizer, J., Rapoport, G., Debarbouille, M., 1994. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the Ntrc/NifA family of transcriptional activators. J. Bacteriol. 176, 1234-1241.
    Chan, E.D., Chan, J., Schluger, N.W., 2001. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am. J. Respir Cell Mol. Biol. 25, 606-612.
    Chang, C.I., Liao, J.C., Kuo, L., 1998. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. 274, H342-H348.
    Chattopadhyay, M.K., Tabor, C.W., Tabor, H., 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. U. S. A. 100, 2261-2265.
    Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry 3rd, C.E., et al., 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544.
    de los Rios, S., Perona, J.J., 2007. Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J. Mol. Biol. 366, 1589-1602.
    Deng, W., Wang, H., Xie, J., 2011. Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. J. Cell. Biochem. 112, 2655-2662.
    Dougan, D.A., Mogk, A., Bukau, B., 2002. Protein folding and degradation in bacteria:to degrade or not to degrade? That is the question. Cell. Mol. Life Sci. 59, 1607-1616.
    Ehrt, S., Schnappinger, D., 2009. Mycobacterial survival strategies in the phagosome:defence against host stresses. Cell Microbiol. 11, 1170-1178.
    El Kasmi, K.C., Qualls, J.E., Pesce, J.T., Smith, A.M., Thompson, R.W., HenaoTamayo, M., Basaraba, R.J., Konig, T., Schleicher, U., Koo, M.S., et al., 2008. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399-1406.
    Elhai, J., 2015. Highly iterated palindromic sequences (HIPs) and their relationship to DNA methyltransferases. Life 5, 921-948.
    Fay, A., Glickman, M.S., 2014. An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet. 10, e1004516.
    Flesch, I.E., Hess, J.H., Oswald, I.P., Kaufmann, S.H., 1994. Growth inhibition of Mycobacterium bovis by IFN-gamma stimulated macrophages:regulation by endogenous tumor necrosis factor-alpha and by IL-10. Int. Immunol. 6, 693-700.
    Garbe, T.R., Hibler, N.S., Deretic, V., 1999. Response to reactive nitrogen intermediates in Mycobacterium tuberculosis:induction of the 16-kilodalton a-crystallin homolog by exposure to nitric oxide donors. Infect. Immun. 67, 460-465.
    Gardan, R., Rapoport, G., Debarbouille, M., 1995. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J. Mol. Biol. 249, 843-856.
    Glaser, P., Kunst, F., Arnaud, M., Coudart, M.P., Gonzales, W., Hullo, M.F., Ionescu, M., Lubochinsky, B., Marcelino, L., Moszer, I., et al., 1993. Bacillus subtilis genome project:cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10, 371-384.
    Gobert, A.P., McGee, D.J., Akhtar, M., Mendz, G.L., Newton, J.C., Cheng, Y., Mobley, H.L., Wilson, K.T., 2001. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells:a strategy for bacterial survival. Proc. Natl. Acad. Sci. U. S. A. 98, 13844-13849.
    Gouzy, A., Poquet, Y., Neyrolles, O., 2014. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat. Rev. Microbiol. 12, 729-737.
    Hampel, A., Huber, C., Geffers, R., Spona-Friedl, M., Eisenreich, W., Bange, F.C., 2015. Mycobacterium tuberculosis is a natural ornithine aminotransferase (rocD) mutant and depends on Rv2323c for growth on arginine. PLoS One 10, e0136914.
    Ivanisevic, J., Zhu, Z.J., Plate, L., Tautenhahn, R., Chen, S., O'Brien, P.J., Johnson, C.H., Marletta, M.A., Patti, G.J., Siuzdak, G., 2013. Toward 'omic scale metabolite profiling:a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal. Chem. 85, 6876-6884.
    Koike, H., Ishijima, S.A., Clowney, L., Suzuki, M., 2004. The archaeal feast/famine regulatory protein:potential roles of its assembly forms for regulating transcription. Proc. Natl. Acad. Sci. U. S. A. 101, 2840-2845.
    Kwon, D.H., Lu, C.D., 2006. Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 50, 1615-1622.
    Larionov, S., Loskutov, A., Ryadchenko, E., 2008. Chromosome evolution with naked eye:palindromic context of the life origin. Chaos 18, 13105.
    Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A., Michael, A.J., 2009. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284, 9899-9907.
    Leonard, P.M., Smits, S.H., Sedelnikova, S.E., Brinkman, A.B., de Vos, W.M., van der Oost, J., Rice, D.W., Rafferty, J.B., 2001. Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J. 20, 990-997.
    Lupoli, T.J., Fay, A., Adura, C., Glickman, M.S., Nathan, C.F., 2016. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc. Natl. Acad. Sci. U. S. A. 113, E7947-E7956.
    MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 94, 5243-5248.
    Miller, B.H., Fratti, R.A., Poschet, J.F., Timmins, G.S., Master, S.S., Burgos, M., Marletta, M.A., Deretic, V., 2004. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect. Immun. 72, 2872-2878.
    Mills, C.D., 2001. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline:a life or death issue. Crit. Rev. Immunol. 21, 399-425.
    Modolell, M., Corraliza, I.M., Link, F., Soler, G., Eichmann, K., 1995. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25, 1101-1104.
    Nathan, C., Shiloh, M.U., 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. U. S. A. 97, 8841-8848.
    Nozaki, Y., Hasegawa, Y., Ichiyama, S., Nakashima, I., Shimokata, K., 1997. Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect. Immun. 65, 3644-3647.
    Ochoa, J.B., Strange, J., Kearney, P., Gellin, G., Endean, E., Fitzpatrick, E., 2001. Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN J. Parenter. Enter. Nutr. 25, 23-29.
    Ouhammouch, M., Dewhurst, R.E., Hausner, W., Thomm, M., Geiduschek, E.P., 2003. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc. Natl. Acad. Sci. U. S. A. 100, 5097-5102.
    Oves-Costales, D., Kadi, N., Fogg, M.J., Song, L., Wilson, K.S., Challis, G.L., 2007. Enzymatic logic of anthrax stealth siderophore biosynthesis:AsbA catalyzes ATPdependent condensation of citric acid and spermidine. J. Am. Chem. Soc. 129, 8416-8417.
    Pan, Y.H., Liao, C.C., Kuo, C.C., Duan, K.J., Liang, P.H., Yuan, H.S., Hu, S.T., Chak, K.F., 2006. The critical roles of polyamines in regulating ColE7 production and restricting ColE7 uptake of the colicin-producing Escherichia coli. J. Biol. Chem. 281, 13083-13091.
    Parti, R.P., Shrivastava, R., Srivastava, S., Subramanian, A.R., Roy, R., Srivastava, B.S., Srivastava, R., 2008. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis. Microb. Pathog. 45, 370-376.
    Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D., Oliveira, M.A., 2006. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.
    Peeters, E., Albers, S.V., Vassart, A., Driessen, A.J., Charlier, D., 2009. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol. Microbiol. 71, 972-988.
    Peteroy-Kelly, M.A., Venketaraman, V., Talaue, M., Seth, A., Connell, N.D., 2003. Modulation of J774.1 macrophage L-arginine metabolism by intracellular Mycobacterium bovis BCG. Infect. Immun. 71, 1011-1015.
    Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S.Y., Chen, Z., Li, B., Yao, G., et al., 2019. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell. 73, 143-156.
    Reddy, M.C., Gokulan, K., Jacobs Jr., W.R., Ioerger, T.R., Sacchettini, J.C., 2008. Crystal structure of Mycobacterium tuberculosis LrpA, a leucine-responsive global regulator associated with starvation response. Protein Sci. 17, 159-170.
    Rodriguez, P.C., Quiceno, D.G., Ochoa, A.C., 2007. L-arginine availability regulates Tlymphocyte cell-cycle progression. Blood 109, 1568-1573.
    Schut, G.J., Menon, A.L., Adams, M.W., 2001. 2-keto acid oxidoreductases from Pyrococcus furiosus and Thennococcus litoralis. Methods Enzymol. 331, 144-158.
    Schwaiger, R., Schwarz, C., Furtwangler, K., Tarasov, V., Wende, A., Oesterhelt, D., 2010. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1. BMC Mol. Biol. 11, 40.
    Shah, P., Romero, D.G., Swiatlo, E., 2008. Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb. Pathog. 45, 167-172.
    Slayden, R.A., Knudson, D.L., Belisle, J.T., 2006. Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology 152, 1789-1797.
    Talaue, M.T., Venketaraman, V., Hazbon, M.H., Peteroy-Kelly, M., Seth, A., Colangeli, R., Alland, D., Connell, N.D., 2006. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J. Bacteriol. 188, 4830-4840.
    Tapias, A., Lopez, G., Ayora, S., 2000. Bacillus subtilis lrpc is a sequenceindependent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res. 28, 552-559.
    Thaw, P., Sedelnikova, S.E., Muranova, T., Wiese, S., Ayora, S., Alonso, J.C., Brinkman, A.B., Akerboom, J., van der Oost, J., Rafferty, J.B., 2006. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res. 34, 1439-1449.
    Tiwari, S., van Tonder, A.J., Vilcheze, C., Mendes, V., Thomas, S.E., Malek, A., Chen, B., Chen, M., Kim, J., Blundell, T.L., et al., 2018. Arginine-deprivationinduced oxidative damage sterilizes Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 115, 9779-9784.
    Torrey, H.L., Keren, I., Via, L.E., Lee, J.S., Lewis, K., 2016. High persister mutants in Mycobacterium tuberculosis. PLoS One 11, e0155127.
    Tripathi, P., Parijat, P., Patel, V.K., Batra, J.K., 2018. The amino-terminal domain of Mycobacterium tuberculosis ClpB protein plays a crucial role in its substrate disaggregation activity. FEBS. Open. Bio 8, 1669-1690.
    Wang, Y., Cen, X.F., Zhao, G.P., Wang, J., 2012. Characterization of a new glnr binding box in the promoter of amtB in Streptomyces coelicolor inferred a Phop/Glnr competitive binding mechanism for transcriptional regulation of amtB. J. Bacteriol. 194, 5237-5244.
    Yang, M., Gao, C., Cui, T., An, J., He, Z.-G., 2012. A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis. Nucleic Acids Res 40, 1009-1020.
    Yokoyama, K., Ishijima, S.A., Koike, H., Kurihara, C., Shimowasa, A., Kabasawa, M., Kawashima, T., Suzuki, M., 2007. Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure 15, 1542-1554.
    Yurdagul Jr., A., Subramanian, M., Wang, X., Crown, S.B., Ilkayeva, O.R., Darville, L., Kolluru, G.K., Rymond, C.C., Gerlach, B.D., Zheng, Z., et al., 2020. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metabol. 31, 518-533.
    Zea, A.H., Rodriguez, P.C., Culotta, K.S., Hernandez, C.P., DeSalvo, J., Ochoa, J.B., Park, H.J., Zabaleta, J., Ochoa, A.C., 2004. L-arginine modulates CD3ξ expression and T cell function in activated human T lymphocytes. Cell. Immunol. 232, 21-31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads (12) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return