5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Suppressed mitochondrial respiration via NOX5-mediated redox imbalance contributes to the antitumor activity of anlotinib in oral squamous cell carcinoma

doi: 10.1016/j.jgg.2021.06.014
Funds:

This work was supported by funding from the National Natural Science Foundation of China (NSFC 81672659).

  • Received Date: 2021-04-16
  • Accepted Date: 2021-06-23
  • Rev Recd Date: 2021-06-19
  • Publish Date: 2021-07-20
  • Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival (mPFS) and median overall survival (mOS) of patients with recurrent and metastatic (R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patient-derived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/mTOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5 (NOX5) expression, elevated reactive oxygen species (ROS) production, impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phospho-Akt (p-AKT) expression and elevated p-eIF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/eIF2α pathway.

  • loading
  • Accetta, R., Damiano, S., Morano, A., Mondola, P., Paternò, R., Avvedimento, E.V., Santillo, M., 2016. Reactive oxygen species derived from NOX3 and NOX5 drive differentiation of human oligodendrocytes. Front. Cell. Neurosci. 10, 146.
    Blick, S.K., Scott, L.J., 2007. Cetuximab:a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 67, 2585-2607.
    Braakhuis, B.J., Brakenhoff, R.H., Leemans, C.R., 2012. Treatment choice for locally advanced head and neck cancers on the basis of risk factors:biological risk factors. Ann. Oncol. 23 (Suppl. 10), x173-x177.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., 2018. Global cancer statistics 2018:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J Clin. 68, 394-424.
    Burtness, B., Harrington, K.J., Greil, R., Soulières, D., Tahara, M., de Castro Jr., G., Psyrri, A., Basté, N., Neupane, P., Bratland, Å., et al., 2019. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048):a randomised, open-label, phase 3 study. Lancet 394, 1915-1928.
    Chow, L.Q.M., 2020. Head and neck cancer. N. Engl. J. Med. 382, 60-72.
    Decleer, M., Jovanovic, J., Vakula, A., Udovicki, B., Agoua, R.E.K., Madder, A., De Saeger, S., Rajkovic, A., 2018. Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus Cereus cereulide in Caco-2 and HepG2 cells. Toxins 10, 266.
    Deng, Z., Liao, W., Wei, W., Zhong, G., He, C., Zhang, H., Liu, Q., Xu, X., Liang, J., Liu, Z., 2021. Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. 21, 37.
    Dikalov, S., 2011. Cross talk between mitochondria and nadph oxidases. Free Radic. Biol. Med. 51, 1289-1301.
    Ferrari, S.M., Centanni, M., Virili, C., Miccoli, M., Ferrari, P., Ruffilli, I., Ragusa, F., Antonelli, A., Fallahi, P., 2019. Sunitinib in the treatment of thyroid cancer. Curr. Med. Chem. 26, 963-972.
    Ferris, R.L., Blumenschein Jr., G., Fayette, J., Guigay, J., Colevas, A.D., Licitra, L., Harrington, K., Kasper, S., Vokes, E.E., Even, C., et al., 2016. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856-1867.
    Gao, Y., Liu, P., Shi, R., 2020. Anlotinib as a molecular targeted therapy for tumors. Oncol. Lett. 20, 1001-1014.
    Guo, Y., Ahn, M.J., Chan, A., Wang, C.H., Kang, J.H., Kim, S.B., Bello, M., Arora, R.S., Zhang, Q., He, X., et al., 2019. Afatinib versus methotrexate as second-line treatment in asian patients with recurrent or metastatic squamous cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 3):an open-label, randomised phase Ⅲ trial. Ann. Oncol. 30, 1831-1839.
    Han, B., Li, K., Wang, Q., Zhang, L., Shi, J., Wang, Z., Cheng, Y., He, J., Shi, Y., Zhao, Y., et al., 2018a. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer:the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 4, 1569-1575.
    Han, B., Li, K., Zhao, Y., Li, B., Cheng, Y., Zhou, J., Lu, Y., Shi, Y., Wang, Z., Jiang, L., et al., 2018b. Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer:a multicentre, randomised phase Ⅱ trial (ALTER0302). Br. J. Cancer 118, 654-661.
    Hidalgo, M., Amant, F., Biankin, A.V., Budinská, E., Byrne, A.T., Caldas, C., Clarke, R.B., de Jong, S., Jonkers, J., Mælandsmo, G.M., et al., 2014. Patientderived xenograft models:an emerging platform for translational cancer research. Cancer Discov. 4, 998-1013.
    Hsu, P.P., Kang, S.A., Rameseder, J., Zhang, Y., Ottina, K.A., Lim, D., Peterson, T.R., Choi, Y., Gray, N.S., Yaffe, M.B., et al., 2011. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322.
    Keating, G.M., 2017. Sorafenib:a review in hepatocellular carcinoma. Targeted Oncol. 12, 243-253.
    Knoedler, M., Gauler, T.C., Gruenwald, V., Matzdorff, A., Schroeder, M., Dietz, A., Jordan, W.O., Arnold, D., Hennemann, B., Hofele, C., et al., 2013. Phase Ⅱ study of cetuximab in combination with docetaxel in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck after platinum-containing therapy:a multicenter study of the arbeitsgemeinschaft internistische onkologie. Oncol 84, 284-289.
    Lee, Y.T., Tan, Y.J., Oon, C.E., 2018. Molecular targeted therapy:treating cancer with specificity. Eur. J. Pharmacol. 834, 188-196.
    Lin, B., Song, X., Yang, D., Bai, D., Yao, Y., Lu, N., 2018. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene 654, 77-86.
    Lu, J., Xu, W., Qian, J., Wang, S., Zhang, B., Zhang, L., Qiao, R., Hu, M., Zhao, Y., Zhao, X., et al., 2019. Transcriptome profiling analysis reveals that CXCL2 is involved in anlotinib resistance in human lung cancer cells. BMC Med. Genom. 12, 38.
    Machiels, J.P., Subramanian, S., Ruzsa, A., Repassy, G., Lifirenko, I., Flygare, A., Sørensen, P., Nielsen, T., Lisby, S., Clement, P.M., 2011. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy:an open-label, randomised phase 3 trial. Lancet Oncol 12, 333-343.
    Machiels, J.P., Van Maanen, A., Vandenbulcke, J.M., Filleul, B., Seront, E., Henry, S., D'Hondt, L., Lonchay, C., Holbrechts, S., Boegner, P., et al., 2016. Randomized phase Ⅱ study of cabazitaxel versus methotrexate in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck previously treated with platinum-based therapy. Oncol. 21, e1416-e1417.
    Martinez-Trufero, J., Isla, D., Adansa, J.C., Irigoyen, A., Hitt, R., Gil-Arnaiz, I., Lambea, J., Lecumberri, M.J., Cruz, J.J., 2010. Phase Ⅱ study of capecitabine as palliative treatment for patients with recurrent and metastatic squamous head and neck cancer after previous platinum-based treatment. Br. J. Cancer 102, 1687-1691.
    Mehra, R., Seiwert, T.Y., Gupta, S., Weiss, J., Gluck, I., Eder, J.P., Burtness, B., Tahara, M., Keam, B., Kang, H., et al., 2018. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma:pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 119, 153-159.
    Meng, X., Wang, H., Zhao, J., Hu, L., Zhi, J., Wei, S., Ruan, X., Hou, X., Li, D., Zhang, J., et al., 2020. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front. Oncol. 10, 217.
    Mer, A.S., Ba-Alawi, W., Smirnov, P., Wang, Y.X., Brew, B., Ortmann, J., Tsao, M.S., Cescon, D.W., Goldenberg, A., Haibe-Kains, B., 2019. Integrative pharmacogenomics analysis of patient-derived xenografts. Cancer Res 79, 4539-4550.
    Mounir, Z., Krishnamoorthy, J.L., Wang, S., Papadopoulou, B., Campbell, S., Muller, W.J., Hatzoglou, M., Koromilas, A.E., 2011. Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Sci. Signal. 4, ra62.
    Park, S., Oh, S.S., Lee, K.W., Lee, Y.K., Kim, N.Y., Kim, J.H., Yoo, J., Kim, K.D., 2018. NDRG2 contributes to cisplatin sensitivity through modulation of BAK-to-MCL-1 ratio. Cell Death Dis 9, 30.
    Rajesh, K., Krishnamoorthy, J., Kazimierczak, U., Tenkerian, C., Papadakis, A.I., Wang, S., Huang, S., Koromilas, A.E., 2015. Phosphorylation of the translation initiation factor EIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis 6, e1591.
    Rodríguez-Hernández, M.A., de la Cruz-Ojeda, P., López-Grueso, M.J., Navarro-Villarán, E., Requejo-Aguilar, R., Castejón-Vega, B., Negrete, M., Gallego, P., Vega-Ochoa, Á., Victor, V.M., et al., 2020. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol. 36, 101510.
    Rosenberg, L., Yoon, C.H., Sharma, G., Bertagnolli, M.M., Cho, N.L., 2018. Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3K/Akt/mTOR pathways. Carcinogenesis 39, 681-688.
    Salazar, G., 2018. NADPH oxidases and mitochondria in vascular senescence. Int. J. Mol. Sci. 19, 1327.
    Scott, L.J., 2018. Apatinib:a review in advanced gastric cancer and other advanced cancers. Drugs 78, 747-758.
    Seiwert, T.Y., Fayette, J., Cupissol, D., Del Campo, J.M., Clement, P.M., Hitt, R., Degardin, M., Zhang, W., Blackman, A., Ehrnrooth, E., et al., 2014. A randomized, phase Ⅱ study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Ann. Oncol. 25, 1813-1820.
    Song, F., Hu, B., Cheng, J.W., Sun, Y.F., Zhou, K.Q., Wang, P.X., Guo, W., Zhou, J., Fan, J., Chen, Z., et al., 2020. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis 11, 573.
    Song, G., Ouyang, G., Bao, S., 2005. The activation of Akt/PKB signaling pathway and cell survival. J. Cell Mol. Med. 9, 59-71.
    Sun, X., Li, J., Li, Y., Wang, S., Li, Q., 2020a. Apatinib, a novel tyrosine kinase inhibitor, promotes ROS-dependent apoptosis and autophagy via the Nrf2/HO-1 pathway in ovarian cancer cells. Oxid. Med. Cell Longev. 2020, 3145182.
    Sun, X., Shu, Y., Yan, P., Huang, H., Gao, R., Xu, M., Lu, L., Tian, J., Huang, D., Zhang, J., 2020b. Transcriptome profiling analysis reveals that ATP6V0-2 is involved in the lysosomal activation by anlotinib. Cell Death Dis 11, 702.
    Sun, Y., Niu, W., Du, F., Du, C., Li, S., Wang, J., Li, L., Wang, F., Hao, Y., Li, C., et al., 2016. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J. Hematol. Oncol. 9, 105.
    Szturz, P., Vermorken, J.B., 2020. Management of recurrent and metastatic oral cavity cancer:raising the bar a step higher. Oral Oncol 101, 104492.
    Tian, Z., Liu, H., Zhang, F., Li, L., Du, X., Li, C., Yang, J., Wang, J., 2020. Retrospective review of the activity and safety of apatinib and anlotinib in patients with advanced osteosarcoma and soft tissue sarcoma. Invest. N. Drugs 38, 1559-1569.
    Tran, L., Allen, C.T., Xiao, R., Moore, E., Davis, R., Park, S.J., Spielbauer, K., Van Waes, C., Schmitt, N.C., 2017. Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol. Res. 5, 1141-1151.
    Vermorken, J.B., Mesia, R., Rivera, F., Remenar, E., Kawecki, A., Rottey, S., Erfan, J., Zabolotnyy, D., Kienzer, H.R., Cupissol, D., et al., 2008. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116-1127.
    Vermorken, J.B., Stöhlmacher-Williams, J., Davidenko, I., Licitra, L., Winquist, E., Villanueva, C., Foa, P., Rottey, S., Skladowski, K., Tahara, M., et al., 2013. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM):an open-label phase 3 randomised trial. Lancet Oncol 14, 697-710.
    Wengrod, J.C., Gardner, L.B., 2015. Cellular adaptation to nutrient deprivation:crosstalk between the mTORC1 and eIF2α signaling pathways and implications for autophagy. Cell Cycle 14, 2571-2577.
    Wu, Q., Qi, B., Duan, X., Ming, X., Yan, F., He, Y., Bu, X., Sun, S., Zhu, H., 2021. MicroRNA-126 enhances the biological function of endothelial progenitor cells under oxidative stress via PI3K/Akt/GSK3β and ERK1/2 signaling pathways. Bosn. J. Basic Med. Sci. 21, 71-80.
    Xie, C., Wan, X., Quan, H., Zheng, M., Fu, L., Li, Y., Lou, L., 2018. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci. 109, 1207-1219.
    Yang, F., Jove, V., Xin, H., Hedvat, M., Van Meter, T.E., Yu, H., 2010. Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways. Mol. Cancer Res. 8, 35-45.
    Yang, H., Villani, R.M., Wang, H., Simpson, M.J., Roberts, M.S., Tang, M., Liang, X., 2018. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266.
    Yang, L., Zhou, X., Sun, J., Lei, Q., Wang, Q., Pan, D., Ding, M., Ding, Y., 2020a. Reactive oxygen species mediate anlotinib-induced apoptosis via activation of endoplasmic reticulum stress in pancreatic cancer. Cell Death Dis 11, 766.
    Yang, Q., Ni, L., Imani, S., Xiang, Z., Hai, R., Ding, R., Fu, S., Wu, J.B., Wen, Q., 2020b. Anlotinib suppresses colorectal cancer proliferation and angiogenesis via inhibition of Akt/ERK signaling cascade. Cancer Manag. Res. 12, 4937-4948.
    Yung, H.W., Korolchuk, S., Tolkovsky, A.M., Charnock-Jones, D.S., Burton, G.J., 2007. Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells. Faseb. J. 21, 872-884.
    Zhou, A.P., Bai, Y., Song, Y., Luo, H., Ren, X.B., Wang, X., Shi, B., Fu, C., Cheng, Y., Liu, J., et al., 2019. Anlotinib versus sunitinib as first-line treatment for metastatic renal cell carcinoma:a randomized phase Ⅱ clinical trial. Oncol. 24, e702-e708.
    Zou, Z., Chang, H., Li, H., Wang, S., 2017. Induction of reactive oxygen species:an emerging approach for cancer therapy. Apoptosis 22, 1321-1335.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return