Allis, C.D., Jenuwein, T., 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487-500.
|
Andrews, S., 2010. Fastqc: A quality control tool for high throughput sequence data. https://www.Bioinformatics.Babraham.Ac.Uk/projects/fastqc/.
|
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. AAAI ICWSM.
|
Berni Canani, R., Di Costanzo, M., Leone, L., 2012. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin. Epigenet. 4, 4.
|
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219.
|
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857.
|
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., 2012. Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.
|
Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., Jacobsen, S.E., 2003. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2212-2217.
|
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336.
|
Carrion, V.J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., de Hollander, M., Ruiz-Buck, D., Mendes, L.W., van Ijcken, W.F.J., Gomez-Exposito, R., Elsayed, S.S., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606-612.
|
Carthew, R.W., Sontheimer, E.J., 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642-655.
|
Castrillo, G., Teixeira, P.J., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513-518.
|
Chan, S.W., Zilberman, D., Xie, Z., Johansen, L.K., Carrington, J.C., Jacobsen, S.E., 2004. RNA silencing genes control de novo DNA methylation. Science 303, 1336.
|
Cui, X., Jin, P., Cui, X., Gu, L., Lu, Z., Xue, Y., Wei, L., Qi, J., Song, X., Luo, M., 2013. Control of transposon activity by a histone H3K4 demethylase in rice. Proc. Natl. Acad. Sci. U. S. A. 110, 1953-1958.
|
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033.
|
Deng, X., Song, X.W., Wei, L.Y., Liu, C.Y., Cao, X.F., 2016. Epigenetic regulation and epigenomic landscape in rice. Natl. Sci. Rev. 3, 309-327.
|
Ding, Y., Wang, X., Su, L., Zhai, J., Cao, S., Zhang, D., Liu, C., Bi, Y., Qian, Q., Cheng, Z., 2007. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19, 9-22.
|
Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., Hacquard, S., 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973-983 e914.
|
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than blast. Bioinformatics 26, 2460-2461.
|
Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112, E911-E920.
|
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538-550.
|
Ginestet, C., ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. a Stat. 174, 245-245.
|
Harbort, C.J., Hashimoto, M., Inoue, H., Niu, Y., Guan, R., Rombola, A.D., Kopriva, S., Voges, M., Sattely, E.S., Garrido-Oter, R., 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825-837. e826.
|
Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B., Goossens, A., Nutzmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389.
|
Huang, X.Q., Zhou, X., Zhang, J.B., Cai, Z.C., 2019. Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biol. Fertil. Soils 55, 299-312.
|
Kaushal, R., Peng, L., Singh, S.K., Zhang, M., Zhang, X., Vilchez, J.I., Wang, Z., He, D., Yang, Y., Lv, S., 2021. Dicer-like proteins influence Arabidopsis root microbiota independent of RNA-directed DNA methylation. Microbiome 9, 57.
|
Kumar, M., Yadav, A.N., Saxena, R., Rai, P.K., Paul, D., Tomar, R.S., 2021. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. Biocatal. Agric. Biotechnol. 33., 10.1016/j.bcab.2021.102005.
|
Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., 2015. Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860-864.
|
Liu, C., Lu, F., Cui, X., Cao, X., 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61, 395-420.
|
Liu, Y., Qin, Y., Guo, X., Bai, Y., 2019. Methods and applications for microbiome data analysis. Yi Chuan 41, 845-862.
|
Liu, Y.X., Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., Bai, Y., 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315-330.
|
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T.G.d., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90.
|
Ono, A., Kinoshita, T., 2021. Epigenetics and plant reproduction: multiple steps for responsibly handling succession. Curr. Opin. Plant Biol. 61, 102032.
|
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-D596.
|
Ramos-Cruz, D., Troyee, A.N., Becker, C., 2021. Epigenetics in plant organismic interactions. Curr. Opin. Plant Biol. 61, 102060.
|
Ridenhour, B.J., Brooker, S.L., Williams, J.E., Van Leuven, J.T., Miller, A.W., Dearing, M.D., Remien, C.H., 2017. Modeling time-series data from microbial communities. ISME J. 11, 2526-2537.
|
Rottjers, L., Faust, K., 2018. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761-780.
|
Salas-Gonzalez, I., Reyt, G., Flis, P., Custodio, V., Gopaulchan, D., Bakhoum, N., Dew, T.P., Suresh, K., Franke, R.B., Dangl, J.L., 2021. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, 10.1126/science.abd0695.
|
Samantara, K., Shiv, A., de Sousa, L.L., Sandhu, K.S., Priyadarshini, P., Mohapatra, S.R., 2021. A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement. Environ. Exp. Bot. 188., 10.1016/j.envexpbot.2021.104479.
|
Shi, S., Nuccio, E.E., Shi, Z.J., He, Z., Zhou, J., Firestone, M.K., 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926-936.
|
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261-5267.
|
Wei, L., Gu, L., Song, X., Cui, X., Lu, Z., Zhou, M., Wang, L., Hu, F., Zhai, J., Meyers, B.C., 2014. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 3877-3882.
|
Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., Carrington, J.C., 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104.
|
Zhang, H., Lang, Z., Zhu, J.K., 2018. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489-506.
|
Zhang, J., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., 2019. Nrt1.1b is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676-684.
|