Genetic, epigenetic, and metabolic alterations are all hallmarks of cancer. However, the epigenome and metabolome are both highly complex and dynamic biological networks in vivo. The interplay between the epigenome and metabolome contributes to a biological system that is responsive to the tumor microenvironment and possesses a wealth of unknown biomarkers and targets of cancer therapy. From this perspective, we first review the state of high-throughput biological data acquisition (i.e. multiomics data) and analysis (i.e. computational tools) and then propose a conceptual in silico metabolic and epigenetic regulatory network (MER-Net) that is based on these current high-throughput methods. The conceptual MER-Net is aimed at linking metabolomic and epigenomic networks through observation of biological processes, omics data acquisition, analysis of network information, and integration with validated database knowledge. Thus, MER-Net could be used to reveal new potential biomarkers and therapeutic targets using deep learning models to integrate and analyze large multiomics networks. We propose that MER-Net can serve as a tool to guide integrated metabolomics and epigenomics research or can be modified to answer other complex biological and clinical questions using multiomics data.
Alakwaa, F.M., Chaudhary, K., Garmire, L.X., 2018. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J. Proteome Res. 17, 337-347.
|
Babaei, S., Mahfouz, A., Hulsman, M., Lelieveldt, B.P., de Ridder, J., Reinders, M., 2015. Hi-C chromatin interaction networks predict co-expression in the mouse cortex. PLoS Comput. Biol. 11, e1004221.
|
Bahado-Singh, R.O., Vishweswaraiah, S., Aydas, B., Mishra, N.K., Yilmaz, A., Guda, C., Radhakrishna, U., 2019. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res. 1724, 146457.
|
Bandiera, S., Pernot, S., El Saghire, H., Durand, S.C., Thumann, C., Crouchet, E., Ye, T., Fofana, I., Oudot, M.A., Barths, J., et al., 2016. Hepatitis C virus-induced upregulation of microRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. J. Virol. 90, 6387-6400.
|
Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K., 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
|
Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C., Chotalia, M., Xie, S.Q., Barbieri, M., de Santiago, I., Lavitas, L.M., Branco, M.R., et al., 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519-524.
|
Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al., 2018. Modomics: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, d303-d307.
|
Bogard, N., Linder, J., Rosenberg, A.B., Seelig, G., 2019. A deep neural network for predicting and engineering alternative polyadenylation. Cell 178, 91-106. e123.
|
Bonetti, A., Agostini, F., Suzuki, A.M., Hashimoto, K., Pascarella, G., Gimenez, J., Roos, L., Nash, A.J., Ghilotti, M., Cameron, C.J.F., et al., 2020. Radicl-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat. Commun. 11, 1018.
|
Cai, Z., Cao, C., Ji, L., Ye, R., Wang, D., Xia, C., Wang, S., Du, Z., Hu, N., Yu, X., et al., 2020. RIC-seq for global in situ profiling of RNA-RNA spatial interactions. Nature 582, 432-437.
|
Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., Collins, J.J., 2018. Nextgeneration machine learning for biological networks. Cell 173, 1581-1592.
|
Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X., 2018. Deep learning-based multiomics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24, 1248-1259.
|
Chaudhary, K., Poirion, O.B., Lu, L., Huang, S., Ching, T., Garmire, L.X., 2019. Multimodal meta-analysis of 1,494 hepatocellular carcinoma samples reveals significant impact of consensus driver genes on phenotypes. Clin. Cancer Res. 25, 463-472.
|
Chen, Y., Hong, T., Wang, S., Mo, J., Tian, T., Zhou, X., 2017. Epigenetic modification of nucleic acids:from basic studies to medical applications. Chem. Soc. Rev. 46, 2844-2872.
|
Dai, D., Wang, H., Zhu, L., Jin, H., Wang, X., 2018. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9, 124.
|
Chen, F., Li, G., Zhang, M.Q., Chen, Y., 2018. HiCDB:a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res. 46, 11239-11250.
|
Dai, Z., Ramesh, V., Locasale, J.W., 2020. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737-753.
|
Delaunay, S., Frye, M., 2019. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 552-559.
|
Deng, L., Wang, J., Zhang, J., 2019. Predicting gene ontology function of human micrornas by integrating multiple networks. Front. Genet. 10, 3.
|
Diehl, K.L., Muir, T.W., 2020. Chromatin as a key consumer in the metabolite economy. Nat. Chem. Biol. 16, 620-629.
|
Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B., 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380.
|
Djekidel, M.N., Chen, Y., Zhang, M.Q., 2018. FIND:difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res. 28, 412-422.
|
Fanaee, T.H., Thoresen, M., 2019. Multi-insight visualization of multi-omics data via ensemble dimension reduction and tensor factorization. Bioinformatics 35, 1625-1633.
|
Fang, J., Ma, Q., Chu, C., Huang, B., Li, L., Cai, P., Batista, P.J., Tolentino, K.E.M., Xu, J., Li, R., et al., 2019. PIRCh-seq:functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biol. 20, 292.
|
Fang, R., Yu, M., Li, G., Chee, S., Liu, T., Schmitt, A.D., Ren, B., 2016. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345-1348.
|
Fortelny, N., Bock, C., 2020. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol. 21, 190.
|
Fu, T.-y., Lee, W.-C., Lei, Z., 2017. Hin2vec:explore meta-paths in heterogeneous information networks for representation learning. In:Paper Presented at:Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
|
Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al., 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64.
|
Galligan, J.J., Marnett, L.J., 2017. Histone adduction and its functional impact on epigenetics. Chem. Res. Toxicol. 30, 376-387.
|
Gong, Y., Ji, P., Yang, Y.S., Xie, S., Yu, T.J., Xiao, Y., Jin, M.L., Ma, D., Guo, L.W., Pei, Y.C., et al., 2021. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metabol. 33, 51-64. e59.
|
Guo, W., Xu, Y., Feng, X., 2017. Deepmetabolism:a deep learning system to predict phenotype from genome sequencing. biorxiv arXiv:1705.03094.
|
Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer:the next generation. Cell 144, 646-674.
|
Helm, M., Motorin, Y., 2017. Detecting RNA modifications in the epitranscriptome:predict and validate. Nat. Rev. Genet. 18, 275-291.
|
Huang, L., Wang, L., Hu, X., Chen, S., Tao, Y., Su, H., Yang, J., Xu, W., Vedarethinam, V., Wu, S., et al., 2020. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 11, 3556.
|
Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G., Oliviero, S., 2017. High-throughput single-base resolution mapping of RNA 2'-o-methylated residues. Nucleic Acids Res. 45, 1433-1441.
|
Inglese, P., McKenzie, J.S., Mroz, A., Kinross, J., Veselkov, K., Holmes, E., Takats, Z., Nicholson, J.K., Glen, R.C., 2017. Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chem. Sci. 8, 3500-3511.
|
Jin, S., Zeng, X., Xia, F., Huang, W., Liu, X., 2020. Application of deep learning methods in biological networks. Briefings Bioinf. 22, 1902-1917.
|
Jindal, V., 2017. A deep learning framework for identification of microrna regulatory modules:student research abstract. In:Paper Presented at:Proceedings of the Symposium on Applied Computing.
|
Jozwik, K.M., Chernukhin, I., Serandour, A.A., Nagarajan, S., Carroll, J.S., 2016. FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep. 17, 2715-2723.
|
Karagkouni, D., Paraskevopoulou, M.D., Chatzopoulos, S., Vlachos, I.S., Tastsoglou, S., Kanellos, I., Papadimitriou, D., Kavakiotis, I., Maniou, S., Skoufos, G., et al., 2018. DIANA-TarBase v8:a decade-long collection of experimentally supported mirna-gene interactions. Nucleic Acids Res. 46, d239-d245.
|
Karagkouni, D., Paraskevopoulou, M.D., Tastsoglou, S., Skoufos, G., Karavangeli, A., Pierros, V., Zacharopoulou, E., Hatzigeorgiou, A.G., 2020. DIANA-TarBase v8:a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 48, D101-D110.
|
Kc, K., Li, R., Cui, F., Yu, Q., Haake, A.R., 2019. GNE:a deep learning framework for gene network inference by aggregating biological information. BMC Syst. Biol. 13, 38-38.
|
Kim, S.Y., Kim, T.R., Jeong, H.-H., Sohn, K.-A., 2018. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer. BMC Med. Genom. 11, 68.
|
Kong, Y., Yu, T., 2018. A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data. Bioinformatics 34, 3727-3737.
|
Kouznetsova, V.L., Li, J., Romm, E., Tsigelny, I.F., 2021. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis. 27, 484-493.
|
Langfelder, P., Horvath, S., 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
|
Lewis, J.E., Kemp, M.L., 2020. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700.
|
Li, T., Wang, L., Du, Y., Xie, S., Yang, X., Lian, F., Zhou, Z., Qian, C., 2018. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res. 46, 3218-3231.
|
Liang, Z., Li, G., Wang, Z., Djekidel, M.N., Li, Y., Qian, M.P., Zhang, M.Q., Chen, Y., 2017. BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun. 8, 1622.
|
Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
|
Lieven, C., Beber, M.E., Olivier, B.G., Bergmann, F.T., Ataman, M., Babaei, P., Bartell, J.A., Blank, L.M., Chauhan, S., Correia, K., et al., 2020. Memote for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272-276.
|
Liu, X., Romero, I.L., Litchfield, L.M., Lengyel, E., Locasale, J.W., 2016. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metabol. 24, 728-739.
|
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al., 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93-95.
|
Long, J., Xiong, J., Bai, Y., Mao, J., Lin, J., Xu, W., Zhang, H., Chen, S., Zhao, H., 2019. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma. Front. Oncol. 9, 649.
|
Ma, T., Zhang, A.J.B.g., 2019. Integrate multi-omics data with biological interaction networks using multi-view factorization autoencoder. BMC Genom. 20, 944.
|
Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.J.N.c., 2020. Realistic in silico generation and augmentation of singlecell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 166.
|
Mentch, S.J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gómez Padilla, P., Ables, G., Bamman, M.M., Thalacker-Mercer, A.E., et al., 2015. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metabol. 22, 861-873.
|
Miranda-Gonçalves, V., Lameirinhas, A., Henrique, R., Jerónimo, C.J.F.i.g., 2018. Metabolism and epigenetic interplay in cancer:regulation and putative therapeutic targets. Front. Genet. 9, 427.
|
Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., Chang, H.Y., 2016. HiChIP:efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919-922.
|
Nencioni, A., Caffa, I., Cortellino, S., Longo, V.D., 2018. Fasting and cancer:molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707-719.
|
Nielsen, J., 2017. Systems biology of metabolism. Annu. Rev. Biochem. 86, 245-275.
|
Pavlova, N.N., Thompson, C.B., 2016. The emerging hallmarks of cancer metabolism. Cell Metabol. 23, 27-47.
|
Perez-Riverol, Y., Bai, M., da Veiga Leprevost, F., Squizzato, S., Park, Y.M., Haug, K., Carroll, A.J., Spalding, D., Paschall, J., Wang, M.J., 2017. Discovering and linking public omics data sets using the omics discovery index. Nat. Biotechnol. 35, 406-409.
|
Perozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk:online learning of social representations. In:Paper Presented at:Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
|
Pidsley, R., Zotenko, E., Peters, T.J., Lawrence, M.G., Risbridger, G.P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C., Clark, S.J.J.G.b., 2016. Critical evaluation of the illumina methylationepic beadchip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208.
|
Poirion, O.B., Chaudhary, K., Garmire, L.X., 2018. Deep learning data integration for better risk stratification models of bladder cancer. AMIA Jt. Summits. Transl. Sci. Proc. 2017, 197-206.
|
Posavec Marjanović, M., Hurtado-Bagès, S., Lassi, M., Valero, V., Malinverni, R., Delage, H., Navarro, M., Corujo, D., Guberovic, I., Douet, J., et al., 2017. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nat. Struct. Mol. Biol. 24, 902-910.
|
Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai, M.M., Shishkin, A.A., Bhat, P., Takei, Y., et al., 2018. Higher-order interchromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744-757 e724.
|
Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
|
Rauscher, G.H., Kresovich, J.K., Poulin, M., Yan, L., Macias, V., Mahmoud, A.M., AlAlem, U., Kajdacsy-Balla, A., Wiley, E.L., Tonetti, D., et al., 2015. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15, 816.
|
Reid, M.A., Dai, Z., Locasale, J.W., 2017. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298-1306.
|
Robinson, J.T., Turner, D., Durand, N.C., Thorvaldsdóttir, H., Mesirov, J.P., Aiden, E.L., 2018. Juicebox.Js provides a cloud-based visualization system for Hi-C data. Cell. Syst. 6, 256-258 e251.
|
Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al., 2020. The human tumor atlas network:charting tumor transitions across space and time at single-cell resolution. Cell 181, 236-249.
|
Shen, F., Boccuto, L., Pauly, R., Srikanth, S., Chandrasekaran, S., 2019. Genomescale network model of metabolism and histone acetylation reveals metabolic dependencies of histone deacetylase inhibitors. Genome Biol. 20, 49.
|
Stumpel, D.J., Schneider, P., van Roon, E.H., Pieters, R., Stam, R.W., 2013. Absence of global hypomethylation in promoter hypermethylated mixed lineage leukaemiarearranged infant acute lymphoblastic leukaemia. Eur. J. Cancer 49, 175-184.
|
Tang, J., Qu, M., Mei, Q., 2015. Pte:predictive text embedding through large-scale heterogeneous text networks. In:Paper Presented at:Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
|
Telenti, A., Lippert, C., Chang, P.C., DePristo, M., 2018. Deep learning of genomic variation and regulatory network data. Hum. Mol. Genet. 27, R63-R71.
|
Thibodeau, A., Márquez, E.J., Shin, D.G., Vera-Licona, P., Ucar, D., 2017. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin. Sci. Rep. 7, 14466.
|
Thomson, D.W., Dinger, M.E., 2016. Endogenous microRNA sponges:evidence and controversy. Nat. Rev. Genet. 17, 272-283.
|
Torrano, V., Valcarcel-Jimenez, L., Cortazar, A.R., Liu, X., Urosevic, J., CastilloMartin, M., Fernandez-Ruiz, S., Morciano, G., Caro-Maldonado, A., Guiu, M., et al., 2016. The metabolic co-regulator PGC1alpha suppresses prostate cancer metastasis. Nat. Cell Biol. 18, 645-656.
|
Tranchevent, L.-C., Azuaje, F., Rajapakse, J.C., 2019. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients. BMC Med. Genom. 12, 178.
|
Vantaku, V., Amara, C.S., Piyarathna, D.W.B., Donepudi, S.R., Ambati, C.R., Putluri, V., Tang, W., Rajapakshe, K., Estecio, M.R., Terris, M.K., et al., 2019. DNA methylation patterns in bladder tumors of african american patients point to distinct alterations in xenobiotic metabolism. Carcinogenesis 40, 1332-1340.
|
Varum, S., Baggiolini, A., Zurkirchen, L., Atak, Z.K., Cantù, C., Marzorati, E., Bossart, R., Wouters, J., Häusel, J., Tuncer, E., et al., 2019. Yin Yang 1 or-chestrates a metabolic program required for both neural crest development and melanoma formation. Cell Stem Cell 24, 637-653 e639.
|
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., 2008. Extracting and composing robust features with denoising autoencoders. In:Paper Presented at:Proceedings of the 25th International Conference on Machine Learning.
|
Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y.M., Dhanasekaran, S.M., Engelke, C.G., Cao, X., et al., 2019. The landscape of circular RNA in cancer. Cell 176, 869-881 e813.
|
Wang, F., Chainani, P., White, T., Yang, J., Liu, Y., Soibam, B., 2018. Deep learning identifies genome-wide DNA binding sites of long noncoding RNAs. RNA Biol. 15, 1468-1476.
|
Wang, Z., Wang, Y., 2019. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders. BMC Bioinf. 20, 568.
|
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., Systems, L., 2020. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4-24.
|
Xie, Z., Zhang, D., Chung, D., Tang, Z., Huang, H., Dai, L., Qi, S., Li, J., Colak, G., Chen, Y., et al., 2016. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell. 62, 194-206.
|
Xuan, P., Pan, S., Zhang, T., Liu, Y., Sun, H., 2019. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations. Cells 8, 1012.
|
Xuan, J.J., Sun, W.J., Lin, P.H., Zhou, K.R., Liu, S., Zheng, L.L., Qu, L.H., Yang, J.H., 2018. RMBase v2.0:deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46, D327-D334.
|
Yates, L.A., Norbury, C.J., Gilbert, R.J., 2013. The long and short of microRNA. Cell 153, 516-519.
|
Ye, C., Tao, R., Cao, Q., Zhu, D., Wang, Y., Wang, J., Lu, J., Chen, E., Li, L., 2016. Whole-genome DNA methylation and hydroxymethylation profiling for HBVrelated hepatocellular carcinoma. Int. J. Oncol. 49, 589-602.
|
Yi, M., Li, J., Chen, S., Cai, J., Ban, Y., Peng, Q., Zhou, Y., Zeng, Z., Peng, S., Li, X., et al., 2018. Emerging role of lipid metabolism alterations in cancer stem cells. J. Exp. Clin. Cancer Res. 37, 118.
|
You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J., 2018. Graphrnn:generating realistic graphs with deep auto-regressive models. arXiv:1802.08773.
|
Yu, X., Ma, R., Wu, Y., Zhai, Y., Li, S.J.F.i.G., 2018. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Front. Genet. 9, 394.
|
Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V., 2019. Heterogeneous graph neural network. In:Paper Presented at:Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
|
Zhang, Z., Cui, P., Zhu, W., Engineering, D., 2020. Deep Learning on Graphs:A Survey. IEEE Trans. Knowl. Data Eng. https://doi.org/10.1109/TKDE.2020.2981333.
|
Zheng, Y., Nie, P., Peng, D., He, Z., Liu, M., Xie, Y., Miao, Y., Zuo, Z., Ren, J., 2018. M6Avar:a database of functional variants involved in m6A modification. Nucleic Acids Res. 46, D139-D145.
|
Zhou, B., Li, X., Luo, D., Lim, D.H., Zhou, Y., Fu, X.D., 2019. GRID-seq for comprehensive analysis of global RNA-chromatin interactions. Nat. Protoc. 14, 2036-2068.
|
Zhu, Q., Jiang, X., Zhu, Q., Pan, M., He, T., 2019. Graph embedding deep learning guides microbial biomarkers' identification. Front. Genet. 11, 487.
|