5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

A mesenchymal-like subpopulation in non-neuroendocrine SCLC contributes to metastasis

doi: 10.1016/j.jgg.2021.05.007
Funds:

the National Natural Science Foundation of China (81872312 to H.J., 82011540007 to H.J., 31621003 to H.J., 81402371 to Y.J.)

2020YFA0803300 to H.J.)

the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19020201 to H.J.)

the National Basic Research Program of China (2017YFA0505501 to H.J.

This work was supported by the National Natural Science Foundation of China (82030083 to H.J., 81871875 to L.H.)

the International Cooperation Project of Chinese Academy of Sciences (153D31KYSB20190035 to H.J.).

the Basic Frontier Scientific Research Program of Chinese Academy of Science (ZDBS-LY-SM006 to H.J.)

  • Received Date: 2021-04-29
  • Accepted Date: 2021-05-30
  • Rev Recd Date: 2021-05-24
  • Publish Date: 2021-07-20
  • Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity. Mouse SCLC cells derived from the Rb1L/L/Trp53L/L (RP) autochthonous mouse model grew as adhesion or suspension in cell culture, and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells. Here, we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymal-like (Mes) and epithelial-like (Epi) SCLC cells. The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells. Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells. Importantly, inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2 (Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays. Moreover, genetic deletion of Tgfbr2 or Smad4, the key components of the TGF-β signaling pathway, dramatically attenuates SCLC metastasis in the RP autochthonous mouse model. Collectively, our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.

  • These authors contributed equally to this work.
  • loading
  • Baine, M.K., Hsieh, M.S., Lai, W.V., Egger, J.V., Jungbluth, A.A., Daneshbod, Y., Beras, A., Spencer, R., Lopardo, J., Bodd, F., et al., 2020. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1:a comprehensive immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 15, 1823-1835.
    Calbo, J., van Montfort, E., Proost, N., van Drunen, E., Beverloo, H.B., Meuwissen, R., Berns, A., 2011. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Canc. Cell 19, 244-256.
    Christensen, C.L., Kwiatkowski, N., Abraham, B.J., Carretero, J., Al-Shahrour, F., Zhang, T., Chipumuro, E., Herter-Sprie, G.S., Akbay, E.A., Altabef, A., et al., 2014. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Canc. Cell 26, 909-922.
    Colak, S., Ten Dijke, P., 2017. Targeting TGF-b signaling in cancer. Trends Cancer 3, 56-71.
    Damstrup, L., Rygaard, K., Spang-Thomsen, M., Skovgaard Poulsen, H., 1993. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines. Br. J. Cancer 67, 1015-1021.
    Denny, S.K., Yang, D., Chuang, C.H., Brady, J.J., Lim, J.S., Gruner, B.M., Chiou, S.H., Schep, A.N., Baral, J., Hamard, C., et al., 2016. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 166, 328-342.
    Derynck, R., Akhurst, R.J., Balmain, A., 2001. TGF-b signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129.
    Dooley, A.L., Winslow, M.M., Chiang, D.Y., Banerji, S., Stransky, N., Dayton, T.L., Snyder, E.L., Senna, S., Whittaker, C.A., Bronson, R.T., et al., 2011. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 25, 1470-1475.
    Elliott, R.L., Blobe, G.C., 2005. Role of transforming growth factor beta in human cancer. J. Clin. Oncol. 23, 2078-2093.
    Gay, C.M., Stewart, C.A., Park, E.M., Diao, L., Groves, S.M., Heeke, S., Nabet, B.Y., Fujimoto, J., Solis, L.M., Lu, W., et al., 2021. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 346-360.
    Gazdar, A.F., Bunn, P.A., Minna, J.D., 2017. Small-cell lung cancer:what we know, what we need to know and the path forward. Nat. Rev. Cancer 17, 725-737.
    George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu, X., Fernandez-Cuesta, L., Bosco, G., et al., 2015. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53.
    Huang, W., Yang, Y., Wu, J., Niu, Y., Yao, Y., Zhang, J., Huang, X., Liang, S., Chen, R., Chen, S., et al., 2020. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-b signalling. Cell Death Differ. 27, 1709-1727.
    Ireland, A.S., Micinski, A.M., Kastner, D.W., Guo, B., Wait, S.J., Spainhower, K.B., Conley, C.C., Chen, O.S., Guthrie, M.R., Soltero, D., et al., 2020. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Canc. Cell 38, 60-78 e12.
    Jahchan, N.S., Lim, J.S., Bola, B., Morris, K., Seitz, G., Tran, K.Q., Xu, L., Trapani, F., Morrow, C.J., Cristea, S., et al., 2016. Identification and targeting of long-term tumor-propagating cells in small cell lung cancer. Cell Rep. 16, 644-656.
    Jin, Y., Ma, D., Gramyk, T., Guo, C., Fang, R., Ji, H., Shi, Y.G., 2019. Kdm1a promotes SCLC progression by transcriptionally silencing the tumor suppressor Rest. Biochem. Biophys. Res. Commun. 515, 214-221.
    Kim, Y.W., Park, J., Lee, H.J., Lee, S.Y., Kim, S.J., 2012. TGF-b sensitivity is determined by N-linked glycosylation of the type Ⅱ TGF-b receptor. Biochem. J. 445, 403-411.
    Kwon, M.C., Proost, N., Song, J.Y., Sutherland, K.D., Zevenhoven, J., Berns, A., 2015. Paracrine signaling between tumor subclones of mouse SCLC:a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev. 29, 1587-1592.
    Lee, J.M., Dedhar, S., Kalluri, R., Thompson, E.W., 2006. The epithelial-mesenchymal transition:new insights in signaling, development, and disease. J. Cell Biol. 172, 973-981.
    Lim, J.S., Ibaseta, A., Fischer, M.M., Cancilla, B., O'Young, G., Cristea, S., Luca, V.C., Yang, D., Jahchan, N.S., Hamard, C., et al., 2017. Intratumoural heterogeneity generated by notch signalling promotes small-cell lung cancer. Nature 545, 360-364.
    Li, X., Li, C., Guo, C., Zhao, Q., Cao, J., Huang, H.-Y., Yue, M., Xue, Y., Jin, Y., Hu, L., et al., 2021. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J. Genet. Genomics 48, 640-651.
    McFadden, D.G., Papagiannakopoulos, T., Taylor-Weiner, A., Stewart, C., Carter, S.L., Cibulskis, K., Bhutkar, A., McKenna, A., Dooley, A., Vernon, A., et al., 2014. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298-1311.
    Meng, X.M., Nikolic-Paterson, D.J., Lan, H.Y., 2016. TGF-b:the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325-338.
    Meuwissen, R., Linn, S.C., Linnoila, R.I., Zevenhoven, J., Mooi, W.J., Berns, A., 2003. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Canc. Cell 4, 181-189.
    Morikawa, M., Derynck, R., Miyazono, K., 2016. TGF-b and the TGF-b family:Context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873.
    Murai, F., Koinuma, D., Shinozaki-Ushiku, A., Fukayama, M., Miyaozono, K., Ehata, S., 2015. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-b-Smad-ASCL1 pathway. Cell Discov. 1, 15026.
    Nguyen, D.X., Bos, P.D., Massague, J., 2009. Metastasis:from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274-284.
    Norgaard, P., Damstrup, L., Rygaard, K., Spang-Thomsen, M., Skovgaard Poulsen, H., 1994. Growth suppression by transforming growth factor b 1 of human small-cell lung cancer cell lines is associated with expression of the type ii receptor. Br. J. Cancer 69, 802-808.
    Padua, D., Massague, J., 2009. Roles of tgfbeta in metastasis. Cell Res. 19, 89-102.
    Rudin, C.M., Poirier, J.T., Byers, L.A., Dive, C., Dowlati, A., George, J., Heymach, J.V., Johnson, J.E., Lehman, J.M., MacPherson, D., et al., 2019. Molecular subtypes of small cell lung cancer:a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289-297.
    Semenova, E.A., Kwon, M.C., Monkhorst, K., Song, J.Y., Bhaskaran, R., Krijgsman, O., Kuilman, T., Peters, D., Buikhuisen, W.A., Smit, E.F., et al., 2016. Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients. Cell Rep. 16, 631-643.
    Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J.Y., Almirez, R., Mangadu, R., Liu, Y.W., Platten, M., Herrlinger, U., et al., 2004. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64, 7954-7961.
    Venhuizen, J.H., Jacobs, F.J.C., Span, P.N., Zegers, M.M., 2020. P120 and E-cadherin:Double-edged swords in tumor metastasis. Semin. Cancer Biol. 60, 107-120.
    Wu, N., Jia, D., Ibrahim, A.H., Bachurski, C.J., Gronostajski, R.M., MacPherson, D., 2016. NFIB overexpression cooperates with Rb/p53 deletion to promote small cell lung cancer. Oncotarget 7, 57514-57524.
    Yu, Y., Feng, X.H., 2019. TGF-b signaling in cell fate control and cancer. Curr. Opin. Cell Biol. 61, 56-63.
    Zhang, J., Ten Dijke, P., Wuhrer, M., Zhang, T., 2021. Role of glycosylation in TGF-b signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 12, 89-106.
    Zhao, G., Gong, L., Su, D., Jin, Y., Guo, C., Yue, M., Yao, S., Qin, Z., Ye, Y., Tang, Y., et al., 2019. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin beta1. J. Clin. Invest. 129, 972-987.
    Zhao, L., Li, J., Liu, Y., Zhou, W., Shan, Y., Fan, X., Zhou, X., Shan, B., Song, Y., Zhan, Q., 2018. Flotillin1 promotes EMT of human small cell lung cancer via TGFb signaling pathway. Cancer Biol. Med. 15, 400-414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return