5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways

doi: 10.1016/j.jgg.2021.05.006
Funds:

This work was supported by the National Natural Science Foundation of China (81802711), the China Postdoctoral Science Foundation (2019T120781, 2018M631032, and 2017M622882), the Sci-Tech Project Foundation of Guangzhou City (201707020039), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06S638), the National Science Foundation for Excellent Young Scholars (81222035), Special Support Program of Guangdong (BJX), Chang Jiang Scholars Program (BJX), Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education (202101). We thank all the participants in the study and staff at the biobank of SYSUCC for processing sample preparation and staffs at the High-Throughput Analysis Platform (HTAP) of SYSUCC for data generation and processing.

  • Received Date: 2021-03-15
  • Accepted Date: 2021-05-01
  • Rev Recd Date: 2021-04-29
  • Publish Date: 2021-07-20
  • RNA binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers but scarcely studied in nasopharyngeal carcinoma (NPC). Here, we compare the mRNA levels of 29 RBMs between 87 NPC and 10 control samples. We find that RBM47 is frequently upregulated in NPC specimens, and its high expression is associated with the poor prognosis of patients with NPC. Biological experiments show that RBM47 plays an oncogenic role in NPC cells. Mechanically, RBM47 binds to the promoter and regulates the transcription of BCAT1, and its overexpression partially rescues the inhibitory effects of RBM47-knockdown on NPC cells. Moreover, transcriptome analysis reveals that RBM47 regulates alternative splicing of pre-mRNA, including those cancer-related, to a large extent in NPC cells. Furthermore, RBM47 binds to hnRNPM and cooperatively regulates multiple splicing events in NPC cells. In addition, we find that knockdown of hnRNPM inhibits proliferation and migration of NPC cells. Our study, taken together, shows that RBM47 promotes the progression of NPC through multiple pathways, acting as a transcriptional factor and a modulator of alternative splicing in cooperation with hnRNPM. Our study also highlights that RBM47 and hnRNPM could be prognostic factors and potential therapeutic targets for NPC.

  • loading
  • Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq-a Python framework to work with highthroughput sequencing data. Bioinformatics 31, 166-169.
    Barboro, P., Salvi, S., Rubagotti, A., Boccardo, S., Spina, B., Truini, M., Carmignani, G., Introini, C., Ferrari, N., Boccardo, F., et al., 2014. Prostate cancer:prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int. J. Oncol. 44, 1589-1598.
    Bechara, E.G., Sebestyen, E., Bernardis, I., Eyras, E., Valcarcel, J., 2013. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720-733.
    Blanc, V., Xie, Y., Kennedy, S., Riordan, J.D., Rubin, D.C., Madison, B.B., Mills, J.C., Nadeau, J.H., Davidson, N.O., 2019. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA 25, 70-81.
    Chen, Y.P., Chan, A.T.C., Le, Q.T., Blanchard, P., Sun, Y., Ma, J., 2019. Nasopharyngeal carcinoma. Lancet 394, 64-80.
    Chua, M.L.K., Wee, J.T.S., Hui, E.P., Chan, A.T.C., 2016. Nasopharyngeal carcinoma. Lancet 387, 1012-1024.
    Di Cecilia, S., Zhang, F., Sancho, A., Li, S., Aguilo, F., Sun, Y., Rengasamy, M., Zhang, W., Del Vecchio, L., Salvatore, F., et al., 2016. RBM5-AS1 is critical for self-renewal of colon cancer stem-like cells. Cancer Res. 76, 5615-5627.
    Fossat, N., Tourle, K., Radziewic, T., Barratt, K., Liebhold, D., Studdert, J.B., Power, M., Jones, V., Loebel, D.A., Tam, P.P., 2014. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep. 15, 903-910.
    Guan, R., El-Rass, S., Spillane, D., Lam, S., Wang, Y., Wu, J., Chen, Z., Wang, A., Jia, Z., Keating, A., et al., 2013. RBM47, a novel RNA binding protein, regulates zebrafish head development. Dev. Dynam. 242, 1395-1404.
    Guo, Y., Zhang, K., Cheng, C., Ji, Z., Wang, X., Wang, M., Chu, M., Tang, D.G., Zhu, H.H., Gao, W.Q., 2017. Numb (-/low) enriches a castration-resistant prostate cancer cell subpopulation associated with enhanced Notch and Hedgehog signaling. Clin. Canc. Res. 23, 6744-6756.
    Guo, Y.M., Chen, J.R., Feng, Y.C., Chua, M.L.K., Zeng, Y., Hui, E.P., Chan, A.K.C., Tang, L.Q., Wang, L., Cui, Q., et al., 2020. Germline polymorphisms and length of survival of nasopharyngeal carcinoma:an exome-wide association study in multiple cohorts. Adv. Sci. 7, 1903727.
    Huang, H., Han, Y., Yang, X., Li, M., Zhu, R., Hu, J., Zhang, X., Wei, R., Li, K., Gao, R., 2017. HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget 8, 103364-103374.
    Huelga, S.C., Vu, A.Q., Arnold, J.D., Liang, T.Y., Liu, P.P., Yan, B.Y., Donohue, J.P., Shiue, L., Hoon, S., Brenner, S., et al., 2012. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 1, 167-178.
    Jung, J.H., Lee, H., Cao, B., Liao, P., Zeng, S.X., Lu, H., 2020. RNA-binding motif protein 10 induces apoptosis and suppresses proliferation by activating p53. Oncogene 39, 1031-1040.
    Ke, H., Zhao, L., Zhang, H., Feng, X., Xu, H., Hao, J., Wang, S., Yang, Q., Zou, L., Su, X., et al., 2018. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc. Natl. Acad. Sci. U. S. A. 115, E3426-E3435.
    Kim, Y.E., Won, M., Lee, S.G., Park, C., Song, C.H., Kim, K.K., 2019. RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber assembly during epithelial-to-mesenchymal transition. Oncogene 38, 6521-6536.
    Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
    Lee, A.W., Lau, W.H., Tung, S.Y., Chua, D.T., Chappell, R., Xu, L., Siu, L., Sze, W.M., Leung, T.W., Sham, J.S., et al., 2005. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma:NPC-9901 Trial by the Hong Kong Nasopharyngeal Cancer Study Group. J. Clin. Oncol. 23, 6966-6975.
    Lee, A.W., Ng, W.T., Chan, L.L., Hung, W.M., Chan, C.C., Sze, H.C., Chan, O.S., Chang, A.T., Yeung, R.M., 2014. Evolution of treatment for nasopharyngeal cancer-success and setback in the intensity-modulated radiotherapy era. Radiother. Oncol. 110, 377-384.
    Lin, J.C., Tarn, W.Y., 2011. RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing. J. Cell Biol. 193, 509-520.
    Lin, X., Tan, S., Fu, L., Dong, Q., 2020. BCAT1 overexpression promotes proliferation, invasion, and Wnt signaling in non-small cell lung cancers. OncoTargets Ther. 13, 3583-3594.
    Liu, L., Luo, C., Luo, Y., Chen, L., Liu, Y., Wang, Y., Han, J., Zhang, Y., Wei, N., Xie, Z., et al., 2018. MRPL33 and its splicing regulator hnRNPK are required for mitochondria function and implicated in tumor progression. Oncogene 37, 86-94.
    Lo, K.W., To, K.F., Huang, D.P., 2004. Focus on nasopharyngeal carcinoma. Canc. Cell 5, 423-428.
    Luo, C., Cheng, Y., Liu, Y., Chen, L., Liu, L., Wei, N., Xie, Z., Wu, W., Feng, Y., 2017. SRSF2 regulates alternative splicing to drive hepatocellular carcinoma development. Cancer Res. 77, 1168-1178.
    Oh, J.J., West, A.R., Fishbein, M.C., Slamon, D.J., 2002. A candidate tumor suppressor gene, H37, from the human lung cancer tumor suppressor locus 3p21.3. Cancer Res. 62, 3207-3213.
    Ou, S.I., Zell, J.A., Ziogas, A., Anton-Culver, H., 2007. Epidemiology of nasopharyngeal carcinoma in the United States:improved survival of Chinese patients within the keratinizing squamous cell carcinoma histology. Ann. Oncol. 18, 29-35.
    Pandit, S., Zhou, Y., Shiue, L., Coutinho-Mansfield, G., Li, H., Qiu, J., Huang, J., Yeo, G.W., Ares Jr., M., Fu, X.D., 2013. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell 50, 223-235.
    Passacantilli, I., Frisone, P., De Paola, E., Fidaleo, M., Paronetto, M.P., 2017. hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. Nucleic Acids Res. 45, 12270-12284.
    Pavlyukov, M.S., Yu, H., Bastola, S., Minata, M., Shender, V.O., Lee, Y., Zhang, S., Wang, J., Komarova, S., Wang, J., et al., 2018. Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Canc. Cell 34, 119-135 e10.
    Peng, R.J., Han, B.W., Cai, Q.Q., Zuo, X.Y., Xia, T., Chen, J.R., Feng, L.N., Lim, J.Q., Chen, S.W., Zeng, M.S., et al., 2019. Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia 33, 1451-1462.
    Radine, C., Peters, D., Reese, A., Neuwahl, J., Budach, W., Janicke, R.U., Sohn, D., 2020. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53-p21-axis. Cell Death Differ. 27, 1274-1285.
    Rintala-Maki, N.D., Goard, C.A., Langdon, C.E., Wall, V.E., Traulsen, K.E., Morin, C.D., Bonin, M., Sutherland, L.C., 2007. Expression of RBM5-related factors in primary breast tissue. J. Cell. Biochem. 100, 1440-1458.
    Rokavec, M., Kaller, M., Horst, D., Hermeking, H., 2017. Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci. Rep. 7, 4687.
    Tonjes, M., Barbus, S., Park, Y.J., Wang, W., Schlotter, M., Lindroth, A.M., Pleier, S.V., Bai, A.H.C., Karra, D., Piro, R.M., et al., 2013. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901-908.
    Ule, J., Stefani, G., Mele, A., Ruggiu, M., Wang, X., Taneri, B., Gaasterland, T., Blencowe, B.J., Darnell, R.B., 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580-586.
    Vanharanta, S., Marney, C.B., Shu, W., Valiente, M., Zou, Y., Mele, A., Darnell, R.B., Massague, J., 2014. Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. Elife 3, e02734.
    Wang, K., Hong, R.L., Lu, J.B., Wang, D.L., 2018a. Ste20-like kinase is upregulated in glioma and induces glioma invasion. Neoplasma 65, 185-191.
    Wang, P., Wu, S., Zeng, X., Zhang, Y., Zhou, Y., Su, L., Lin, W., 2018b. BCAT1 promotes proliferation of endometrial cancer cells through reprogrammed BCAA metabolism. Int. J. Clin. Exp. Pathol. 11, 5536-5546.
    Wei, Y., Zhang, F., Zhang, Y., Wang, X., Xing, C., Guo, J., Zhang, H., Suo, Z., Li, Y., Wang, J., et al., 2019. Post-transcriptional regulator RBM47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell. Mol. Immunol. 16, 580-589.
    Wolfe, A.D., Arnold, D.B., Chen, X.S., 2019. Comparison of RNA editing activity of APOBEC1-A1CF and APOBEC1-RBM47 complexes reconstituted in HEK293T cells. J. Mol. Biol. 431, 1506-1517.
    Xi, P.W., Zhang, X., Zhu, L., Dai, X.Y., Cheng, L., Hu, Y., Shi, L., Wei, J.F., Ding, Q., 2020. Oncogenic action of the exosome cofactor RBM7 by stabilization of CDK1 mRNA in breast cancer. NPJ Breast Cancer 6, 58.
    Xu, Y., Gao, X.D., Lee, J.H., Huang, H., Tan, H., Ahn, J., Reinke, L.M., Peter, M.E., Feng, Y., Gius, D., et al., 2014. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev. 28, 1191-1203.
    Yuan, M., Eberhart, C.G., Kai, M., 2014. RNA binding protein RBM14 promotes radioresistance in glioblastoma by regulating DNA repair and cell differentiation. Oncotarget 5, 2820-2826.
    Zhang, L., Huang, Y., Hong, S., Yang, Y., Yu, G., Jia, J., Peng, P., Wu, X., Lin, Q., Xi, X., et al., 2016. Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma:a multicentre, randomised, open-label, phase 3 trial. Lancet 388, 1883-1892.
    Zhang, Z., Lotti, F., Dittmar, K., Younis, I., Wan, L., Kasim, M., Dreyfuss, G., 2008. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585-600.
    Zhao, L., Li, R., Shao, C., Li, P., Liu, J., Wang, K., 2012. 3p21.3 tumor suppressor gene RBM5 inhibits growth of human prostate cancer PC-3 cells through apoptosis. World J. Surg. Oncol. 10, 247.
    Zhou, W., Feng, X., Ren, C., Jiang, X., Liu, W., Huang, W., Liu, Z., Li, Z., Zeng, L., Wang, L., et al., 2013. Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol. Canc. 12, 53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads (11) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return