5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 8
Aug.  2021
Turn off MathJax
Article Contents

Juvenile hormone receptor Met regulates sleep and neuronal morphology via glial-neuronal crosstalk

doi: 10.1016/j.jgg.2021.04.010
Funds:

We thank Jeffrey Price (University of Missouri at Kansas City) for revising this manuscript. This work was supported by the National Natural Science Foundation of China Grants 31970458 and 31730076 (to Z.W. Zhao).

  • Received Date: 2021-01-07
  • Accepted Date: 2021-04-14
  • Rev Recd Date: 2021-04-05
  • Publish Date: 2021-08-20
  • Juvenile hormone (JH) is one of the most important hormones in insects since it is essential for insect development. The mechanism by which JH affects the central nervous system still remains a mystery. In this study, we demonstrate that one of the JH receptors, Methoprene-tolerant (Met), is important for the control of neurite development and sleep behavior in Drosophila. With the identification of Met-expressing glial cells, the mechanism that Met negatively controls the mushroom body (MB) β lobes fusion and positively maintains pigment-dispersing factor sLNvs projection pruning has been established. Furthermore, despite the developmental effects, Met can also maintain nighttime sleep in a development-independent manner through the α/β lobe of MB. Combining analyses of neuronal morphology and entomological behavior, this study advances our understanding of how the JH receptor regulates the nervous system.

  • loading
  • Artiushin, G., Sehgal, A., 2017. The Drosophila circuitry of sleep-wake regulation. Curr. Opin. Neurobiol. 44, 243-250.
    Aso, Y., Grubel, K., Busch, S., Friedrich, A.B., Siwanowicz, I., Tanimoto, H., 2009. The mushroom body of adult Drosophila characterized by GAL4 drivers. J. Neurogenet. 23, 156-172.
    Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L.F., Axel, R., Tanimoto, H., The neuronal architecture of the mushroom body provides a logic for associative learning. Elife e04577.
    Barres, B.A., 1991. Glial ion channels. Curr. Opin. Neurobiol. 1, 354-359.
    Baumann, A.A., Texada, M.J., Chen, H.M., Etheredge, J.N., Miller, D.L., Picard, S., Warner, R., Truman, J.W., Riddiford, L.M., 2017. Genetic tools to study juvenile hormone action in Drosophila. Sci. Rep. 7, 2132.
    Bilen, J., Atallah, J., Azanchi, R., Levine, J.D., Riddiford, L.M., 2013. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc. Natl. Acad. Sci. U . S. A. 110, 18321-18326.
    Böhme, M.A., McCarthy, A.W., Blaum, N., Berezeckaja, M., Ponimaskin, K., Schwefel, D., Walter, A.M., 2021. Glial synaptobrevin mediates peripheral nerve insulation, neural metabolic supply, and is required for motor function. Glia 69, 1897-1915.
    Dubrovsky, E.B., Dubrovskaya, V.A., Bernardo, T., Otte, V., Difilippo, R., Bryan, H., 2011. The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. J. Biol. Chem. 286, 33689.
    Dutta, D.J., Woo, D.H., Lee, P.R., Pajevic, S., Bukalo, O., Huffman, W.C., Wake, H., Basser, P.J., Sheikhbahaei, S., Lazarevic, V., 2018. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl. Acad. Sci. U. S. A. 115, 11832-11837.
    Frago, L.M., Chowen, J.A., 2017. Involvement of astrocytes in mediating the central effects of ghrelin. Int. J. Mol. Sci. 18, 536.
    Fuentes-Medel, Y., Ashley, J., Barria, R., Maloney, R., Freeman, M., Budnik, V., 2012. Integration of a retrograde signal during synapse formation by glia-secreted TGF-β ligand. Curr. Biol. 22, 1831-1838.
    Galagovsky, D., Depetris-Chauvin, A., Maniere, G., Geillon, F., Berthelot-Grosjean, M., Noirot, E., Alves, G., Grosjean, Y., 2018. Sobremesa L-type amino acid transporter expressed in glia is essential for proper timing of development and brain growth. Cell Rep. 24, 3156-3166.
    Glazer, L., Shilo, B.Z., 1991. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Gene Dev. 5, 697.
    Guo, F., Yu, J., Jung, H.J., Abruzzi, K.C., Luo, W., Griffith, L.C., Rosbash, M., 2016. Circadian neuron feedback controls the Drosophila sleep-activity profile. Nature 536, 292-297.
    Helfrich-Forster, Charlotte, 1997. Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 380, 335-354.
    Jindra, M., Palli, S.R., Riddiford, L.M., 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181-204.
    Jindra, M., Uhlirova, M., Charles, J.P., Smykal, V., Hill, R.J., Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. e1005394.
    Joiner, W.J., Crocker, A., White, B.H., Sehgal, A., 2006. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757-760.
    Jordan, C.L., 2015. Glia as mediators of steroid hormone action on the nervous system: an overview. Dev. Neurobiol. 40, 434-445.
    Lee, H.S., Ghetti, A., Pinto-Duarte, A., Wang, X., Dziewczapolski, G., Galimi, F., Huitron-Resendiz, S., Pina-Crespo, J.C., Roberts, A.J., Verma, I.M., 2014. Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl. Acad. Sci. U. S. A. 111, E3343-E3352.
    Lei, Shi, Suewei, Lin, Yelena, Grinberg, Yannick, Beck, Christina, M., 2007. Roles of Drosophila Kruppel-homolog 1 in neuronal morphogenesis. Dev. Neurobio. 67, 1614-1626.
    Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L., 2006. Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551-556.
    Luo, L., O'Leary, D.D.M., 2005. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127-156.
    McClain, J.L., Fried, D.E., Gulbransen, B.D., 2015. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol. Gastroenterol. Hepatol. 1, 631-645.
    Perea, G., Araque, A., 2005. Glial calcium signaling and neuron-glia communication. Cell Calcium 38, 375-382.
    Pfrieger, F.W., 2009. Roles of glial cells in synapse development. Cell. Mol. Life Sci. 66, 2037-2047.
    Pinto-Teixeira, F., Konstantinides, N., Desplan, C., 2016. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett. 590, 2435-2453.
    Pitman, J.L., McGill, J.J., Keegan, K.P., Allada, R., 2006. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753-756.
    R Douglas, F., Beth, S.G., 2002. New insights into neuron-glia communication. Science 298, 556-562.
    Ren, X., Sun, J., Housden, B.E., Hu, Y., Roesel, C., Lin, S., Liu, L.P., Yang, Z., Mao, D., Sun, L., 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc. Natl. Acad. Sci. U. S. A 110, 19012-19017.
    Rungta, R.L., Bernier, L.P., Dissing-Olesen, L., Groten, C.J., LeDue, J.M., Ko, R., Drissler, S., MacVicar, B.A., 2016. Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus. Glia 64, 2093-2103.
    Schwabe, T., Bainton, R.J., Fetter, R.D., Heberlein, U., Gaul, U., 2005. GPCR signaling is required for blood-brain barrier formation in Drosophila.. Cell 123, 133-144.
    Sepp, K.J., Schulte, J., Auld, V.J., 2001. Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev. Biol. 238, 47-63.
    Seugnet, L., Suzuki, Y., Merlin, G., Gottschalk, L., Duntley, S.P., Shaw, P.J., 2011. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr. Biol. 21, 835-840.
    Shaw, P.J., Cirelli, C., Greenspan, R.J., Tononi, G., 2000. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834-1837.
    Song, Q., Feng, G., Huang, Z., Chen, X., Chen, Z., Ping, Y., 2017. Aberrant axonal arborization of PDF neurons induced by Aβ42-mediated JNK activation underlies sleep disturbance in an Alzheimer’s model. Mol. Neurobiol. 54, 6317-6328.
    Stork, T., Bernardos, R., Freeman, M.R., 2012. Analysis of glial cell development and function in Drosophila. Cold Spring Harb. Protoc. 2012, 1-17.
    Tang, X., Roessingh, S., Hayley, S.E., Chu, M.L., Tanaka, N.K., Wolfgang, W., Song, S., Stanewsky, R., Hamada, F.N., The role of PDF neurons in setting the preferred temperature before dawn in Drosophila. Elife e23206.
    Tomita, J., Ban, G., Kume, K., 2017. Genes and neural circuits for sleep of the fruit fly. Neurosci. Res. 118, 82-91.
    Wilson, T.G., Ashok, M., 1998. Insecticide resistance resulting from an absence of target-site gene product. Proc. Natl. Acad. Sci. U. S. A. 95, 14040-14044.
    Wu, B., Ma, L., Zhang, E., Du, J., Liu, S., Price, J., Li, S., Zhao, Z., Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet. e1007318.
    Yasuyama, K., Meinertzhagen, I.A., 2010. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster. J. Comp. Neurol. 518, 292-304.
    Zwarts, L., Van, E.F., Callaerts, P., 2015. Glia in Drosophila behavior. J. Comp. Physiol. 201, 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return